Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
<p>Determining the direct aerosol radiative effect (DARE) of absorbing aerosols above clouds from satellite observations alone is a challenging task, in part because the radiative signal of the aerosol layer is not easily untangled from that of the clouds below. In this study, we use aircraft...
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-12-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://www.atmos-meas-tech.net/12/6505/2019/amt-12-6505-2019.pdf |
id |
doaj-d118758474ed43e59e9d6fe13ed979c8 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. P. Cochrane S. P. Cochrane K. S. Schmidt K. S. Schmidt H. Chen H. Chen P. Pilewskie P. Pilewskie S. Kittelman J. Redemann S. LeBlanc S. LeBlanc K. Pistone K. Pistone M. Kacenelenbogen M. Segal Rozenhaimer M. Segal Rozenhaimer M. Segal Rozenhaimer Y. Shinozuka Y. Shinozuka C. Flynn S. Platnick K. Meyer R. Ferrare S. Burton C. Hostetler S. Howell S. Freitag A. Dobracki S. Doherty |
spellingShingle |
S. P. Cochrane S. P. Cochrane K. S. Schmidt K. S. Schmidt H. Chen H. Chen P. Pilewskie P. Pilewskie S. Kittelman J. Redemann S. LeBlanc S. LeBlanc K. Pistone K. Pistone M. Kacenelenbogen M. Segal Rozenhaimer M. Segal Rozenhaimer M. Segal Rozenhaimer Y. Shinozuka Y. Shinozuka C. Flynn S. Platnick K. Meyer R. Ferrare S. Burton C. Hostetler S. Howell S. Freitag A. Dobracki S. Doherty Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments Atmospheric Measurement Techniques |
author_facet |
S. P. Cochrane S. P. Cochrane K. S. Schmidt K. S. Schmidt H. Chen H. Chen P. Pilewskie P. Pilewskie S. Kittelman J. Redemann S. LeBlanc S. LeBlanc K. Pistone K. Pistone M. Kacenelenbogen M. Segal Rozenhaimer M. Segal Rozenhaimer M. Segal Rozenhaimer Y. Shinozuka Y. Shinozuka C. Flynn S. Platnick K. Meyer R. Ferrare S. Burton C. Hostetler S. Howell S. Freitag A. Dobracki S. Doherty |
author_sort |
S. P. Cochrane |
title |
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments |
title_short |
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments |
title_full |
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments |
title_fullStr |
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments |
title_full_unstemmed |
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments |
title_sort |
above-cloud aerosol radiative effects based on oracles 2016 and oracles 2017 aircraft experiments |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2019-12-01 |
description |
<p>Determining the direct aerosol radiative effect (DARE) of
absorbing aerosols above clouds from satellite observations alone is a
challenging task, in part because the radiative signal of the aerosol layer
is not easily untangled from that of the clouds below. In this study, we use
aircraft measurements from the NASA ObseRvations of CLouds above Aerosols
and their intEractionS (ORACLES) project in the southeastern Atlantic to derive
it with as few assumptions as possible. This is accomplished by using
spectral irradiance measurements (Solar Spectral Flux Radiometer, SSFR) and
aerosol optical depth (AOD) retrievals (Spectrometer for Sky-Scanning,
Sun-Tracking Atmospheric Research, 4STAR) during vertical profiles (spirals)
that minimize the albedo variability of the underlying cloud field – thus
isolating aerosol radiative effects from those of the cloud field below. For
two representative cases, we retrieve spectral aerosol single scattering
albedo (SSA) and the asymmetry parameter (<span class="inline-formula"><i>g</i></span>) from these profile
measurements and calculate DARE given the albedo range measured by SSFR on
horizontal legs above clouds. For mid-visible wavelengths, we find SSA
values from 0.80 to 0.85 and a significant spectral dependence of <span class="inline-formula"><i>g</i></span>. As the
cloud albedo increases, the aerosol increasingly warms the column. The
transition from a cooling to a warming top-of-aerosol radiative effect
occurs at an albedo value (critical albedo) just above 0.2 in the
mid-visible wavelength range. In a companion paper, we use the techniques introduced here to
generalize our findings to all 2016 and 2017 measurements and parameterize
aerosol radiative effects.</p> |
url |
https://www.atmos-meas-tech.net/12/6505/2019/amt-12-6505-2019.pdf |
work_keys_str_mv |
AT spcochrane abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT spcochrane abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT ksschmidt abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT ksschmidt abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT hchen abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT hchen abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT ppilewskie abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT ppilewskie abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT skittelman abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT jredemann abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT sleblanc abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT sleblanc abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT kpistone abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT kpistone abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT mkacenelenbogen abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT msegalrozenhaimer abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT msegalrozenhaimer abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT msegalrozenhaimer abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT yshinozuka abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT yshinozuka abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT cflynn abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT splatnick abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT kmeyer abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT rferrare abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT sburton abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT chostetler abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT showell abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT sfreitag abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT adobracki abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments AT sdoherty abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments |
_version_ |
1725124214964355072 |
spelling |
doaj-d118758474ed43e59e9d6fe13ed979c82020-11-25T01:22:59ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-12-01126505652810.5194/amt-12-6505-2019Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experimentsS. P. Cochrane0S. P. Cochrane1K. S. Schmidt2K. S. Schmidt3H. Chen4H. Chen5P. Pilewskie6P. Pilewskie7S. Kittelman8J. Redemann9S. LeBlanc10S. LeBlanc11K. Pistone12K. Pistone13M. Kacenelenbogen14M. Segal Rozenhaimer15M. Segal Rozenhaimer16M. Segal Rozenhaimer17Y. Shinozuka18Y. Shinozuka19C. Flynn20S. Platnick21K. Meyer22R. Ferrare23S. Burton24C. Hostetler25S. Howell26S. Freitag27A. Dobracki28S. Doherty29Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USASchool of Meteorology, University of Oklahoma, Norman, OK 73019, USABay Area Environmental Research Institute, Mountain View, CA 94035, USANASA Ames Research Center, Mountain View, CA 94035, USABay Area Environmental Research Institute, Mountain View, CA 94035, USANASA Ames Research Center, Mountain View, CA 94035, USANASA Ames Research Center, Mountain View, CA 94035, USABay Area Environmental Research Institute, Mountain View, CA 94035, USANASA Ames Research Center, Mountain View, CA 94035, USADepartment of Geophysics and Planetary Sciences, Porter School of the Environment and Earth Sciences, Tel-Aviv University, Tel-Aviv, IsraelNASA Ames Research Center, Mountain View, CA 94035, USAUniversities Space Research Association, Mountain View, CA 94035, USAPacific Northwest National Laboratory, Richland, WA 99354, USANASA Goddard Space Flight Center, Greenbelt, MD 20771, USANASA Goddard Space Flight Center, Greenbelt, MD 20771, USANASA Langley Research Center, Hampton, VA 23666, USANASA Langley Research Center, Hampton, VA 23666, USANASA Langley Research Center, Hampton, VA 23666, USADepartment of Oceanography, University of Hawaii, Honolulu, HI 96844, USADepartment of Oceanography, University of Hawaii, Honolulu, HI 96844, USADepartment of Atmospheric Science, Rosentiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33146, USAJoint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA<p>Determining the direct aerosol radiative effect (DARE) of absorbing aerosols above clouds from satellite observations alone is a challenging task, in part because the radiative signal of the aerosol layer is not easily untangled from that of the clouds below. In this study, we use aircraft measurements from the NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) project in the southeastern Atlantic to derive it with as few assumptions as possible. This is accomplished by using spectral irradiance measurements (Solar Spectral Flux Radiometer, SSFR) and aerosol optical depth (AOD) retrievals (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research, 4STAR) during vertical profiles (spirals) that minimize the albedo variability of the underlying cloud field – thus isolating aerosol radiative effects from those of the cloud field below. For two representative cases, we retrieve spectral aerosol single scattering albedo (SSA) and the asymmetry parameter (<span class="inline-formula"><i>g</i></span>) from these profile measurements and calculate DARE given the albedo range measured by SSFR on horizontal legs above clouds. For mid-visible wavelengths, we find SSA values from 0.80 to 0.85 and a significant spectral dependence of <span class="inline-formula"><i>g</i></span>. As the cloud albedo increases, the aerosol increasingly warms the column. The transition from a cooling to a warming top-of-aerosol radiative effect occurs at an albedo value (critical albedo) just above 0.2 in the mid-visible wavelength range. In a companion paper, we use the techniques introduced here to generalize our findings to all 2016 and 2017 measurements and parameterize aerosol radiative effects.</p>https://www.atmos-meas-tech.net/12/6505/2019/amt-12-6505-2019.pdf |