Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments

<p>Determining the direct aerosol radiative effect (DARE) of absorbing aerosols above clouds from satellite observations alone is a challenging task, in part because the radiative signal of the aerosol layer is not easily untangled from that of the clouds below. In this study, we use aircraft...

Full description

Bibliographic Details
Main Authors: S. P. Cochrane, K. S. Schmidt, H. Chen, P. Pilewskie, S. Kittelman, J. Redemann, S. LeBlanc, K. Pistone, M. Kacenelenbogen, M. Segal Rozenhaimer, Y. Shinozuka, C. Flynn, S. Platnick, K. Meyer, R. Ferrare, S. Burton, C. Hostetler, S. Howell, S. Freitag, A. Dobracki, S. Doherty
Format: Article
Language:English
Published: Copernicus Publications 2019-12-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/12/6505/2019/amt-12-6505-2019.pdf
id doaj-d118758474ed43e59e9d6fe13ed979c8
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author S. P. Cochrane
S. P. Cochrane
K. S. Schmidt
K. S. Schmidt
H. Chen
H. Chen
P. Pilewskie
P. Pilewskie
S. Kittelman
J. Redemann
S. LeBlanc
S. LeBlanc
K. Pistone
K. Pistone
M. Kacenelenbogen
M. Segal Rozenhaimer
M. Segal Rozenhaimer
M. Segal Rozenhaimer
Y. Shinozuka
Y. Shinozuka
C. Flynn
S. Platnick
K. Meyer
R. Ferrare
S. Burton
C. Hostetler
S. Howell
S. Freitag
A. Dobracki
S. Doherty
spellingShingle S. P. Cochrane
S. P. Cochrane
K. S. Schmidt
K. S. Schmidt
H. Chen
H. Chen
P. Pilewskie
P. Pilewskie
S. Kittelman
J. Redemann
S. LeBlanc
S. LeBlanc
K. Pistone
K. Pistone
M. Kacenelenbogen
M. Segal Rozenhaimer
M. Segal Rozenhaimer
M. Segal Rozenhaimer
Y. Shinozuka
Y. Shinozuka
C. Flynn
S. Platnick
K. Meyer
R. Ferrare
S. Burton
C. Hostetler
S. Howell
S. Freitag
A. Dobracki
S. Doherty
Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
Atmospheric Measurement Techniques
author_facet S. P. Cochrane
S. P. Cochrane
K. S. Schmidt
K. S. Schmidt
H. Chen
H. Chen
P. Pilewskie
P. Pilewskie
S. Kittelman
J. Redemann
S. LeBlanc
S. LeBlanc
K. Pistone
K. Pistone
M. Kacenelenbogen
M. Segal Rozenhaimer
M. Segal Rozenhaimer
M. Segal Rozenhaimer
Y. Shinozuka
Y. Shinozuka
C. Flynn
S. Platnick
K. Meyer
R. Ferrare
S. Burton
C. Hostetler
S. Howell
S. Freitag
A. Dobracki
S. Doherty
author_sort S. P. Cochrane
title Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
title_short Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
title_full Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
title_fullStr Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
title_full_unstemmed Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
title_sort above-cloud aerosol radiative effects based on oracles 2016 and oracles 2017 aircraft experiments
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2019-12-01
description <p>Determining the direct aerosol radiative effect (DARE) of absorbing aerosols above clouds from satellite observations alone is a challenging task, in part because the radiative signal of the aerosol layer is not easily untangled from that of the clouds below. In this study, we use aircraft measurements from the NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) project in the southeastern Atlantic to derive it with as few assumptions as possible. This is accomplished by using spectral irradiance measurements (Solar Spectral Flux Radiometer, SSFR) and aerosol optical depth (AOD) retrievals (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research, 4STAR) during vertical profiles (spirals) that minimize the albedo variability of the underlying cloud field – thus isolating aerosol radiative effects from those of the cloud field below. For two representative cases, we retrieve spectral aerosol single scattering albedo (SSA) and the asymmetry parameter (<span class="inline-formula"><i>g</i></span>) from these profile measurements and calculate DARE given the albedo range measured by SSFR on horizontal legs above clouds. For mid-visible wavelengths, we find SSA values from 0.80 to 0.85 and a significant spectral dependence of <span class="inline-formula"><i>g</i></span>. As the cloud albedo increases, the aerosol increasingly warms the column. The transition from a cooling to a warming top-of-aerosol radiative effect occurs at an albedo value (critical albedo) just above 0.2 in the mid-visible wavelength range. In a companion paper, we use the techniques introduced here to generalize our findings to all 2016 and 2017 measurements and parameterize aerosol radiative effects.</p>
url https://www.atmos-meas-tech.net/12/6505/2019/amt-12-6505-2019.pdf
work_keys_str_mv AT spcochrane abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT spcochrane abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT ksschmidt abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT ksschmidt abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT hchen abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT hchen abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT ppilewskie abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT ppilewskie abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT skittelman abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT jredemann abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT sleblanc abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT sleblanc abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT kpistone abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT kpistone abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT mkacenelenbogen abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT msegalrozenhaimer abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT msegalrozenhaimer abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT msegalrozenhaimer abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT yshinozuka abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT yshinozuka abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT cflynn abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT splatnick abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT kmeyer abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT rferrare abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT sburton abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT chostetler abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT showell abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT sfreitag abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT adobracki abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
AT sdoherty abovecloudaerosolradiativeeffectsbasedonoracles2016andoracles2017aircraftexperiments
_version_ 1725124214964355072
spelling doaj-d118758474ed43e59e9d6fe13ed979c82020-11-25T01:22:59ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-12-01126505652810.5194/amt-12-6505-2019Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experimentsS. P. Cochrane0S. P. Cochrane1K. S. Schmidt2K. S. Schmidt3H. Chen4H. Chen5P. Pilewskie6P. Pilewskie7S. Kittelman8J. Redemann9S. LeBlanc10S. LeBlanc11K. Pistone12K. Pistone13M. Kacenelenbogen14M. Segal Rozenhaimer15M. Segal Rozenhaimer16M. Segal Rozenhaimer17Y. Shinozuka18Y. Shinozuka19C. Flynn20S. Platnick21K. Meyer22R. Ferrare23S. Burton24C. Hostetler25S. Howell26S. Freitag27A. Dobracki28S. Doherty29Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USALaboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USADepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO 80303, USASchool of Meteorology, University of Oklahoma, Norman, OK 73019, USABay Area Environmental Research Institute, Mountain View, CA 94035, USANASA Ames Research Center, Mountain View, CA 94035, USABay Area Environmental Research Institute, Mountain View, CA 94035, USANASA Ames Research Center, Mountain View, CA 94035, USANASA Ames Research Center, Mountain View, CA 94035, USABay Area Environmental Research Institute, Mountain View, CA 94035, USANASA Ames Research Center, Mountain View, CA 94035, USADepartment of Geophysics and Planetary Sciences, Porter School of the Environment and Earth Sciences, Tel-Aviv University, Tel-Aviv, IsraelNASA Ames Research Center, Mountain View, CA 94035, USAUniversities Space Research Association, Mountain View, CA 94035, USAPacific Northwest National Laboratory, Richland, WA 99354, USANASA Goddard Space Flight Center, Greenbelt, MD 20771, USANASA Goddard Space Flight Center, Greenbelt, MD 20771, USANASA Langley Research Center, Hampton, VA 23666, USANASA Langley Research Center, Hampton, VA 23666, USANASA Langley Research Center, Hampton, VA 23666, USADepartment of Oceanography, University of Hawaii, Honolulu, HI 96844, USADepartment of Oceanography, University of Hawaii, Honolulu, HI 96844, USADepartment of Atmospheric Science, Rosentiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33146, USAJoint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA<p>Determining the direct aerosol radiative effect (DARE) of absorbing aerosols above clouds from satellite observations alone is a challenging task, in part because the radiative signal of the aerosol layer is not easily untangled from that of the clouds below. In this study, we use aircraft measurements from the NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) project in the southeastern Atlantic to derive it with as few assumptions as possible. This is accomplished by using spectral irradiance measurements (Solar Spectral Flux Radiometer, SSFR) and aerosol optical depth (AOD) retrievals (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research, 4STAR) during vertical profiles (spirals) that minimize the albedo variability of the underlying cloud field – thus isolating aerosol radiative effects from those of the cloud field below. For two representative cases, we retrieve spectral aerosol single scattering albedo (SSA) and the asymmetry parameter (<span class="inline-formula"><i>g</i></span>) from these profile measurements and calculate DARE given the albedo range measured by SSFR on horizontal legs above clouds. For mid-visible wavelengths, we find SSA values from 0.80 to 0.85 and a significant spectral dependence of <span class="inline-formula"><i>g</i></span>. As the cloud albedo increases, the aerosol increasingly warms the column. The transition from a cooling to a warming top-of-aerosol radiative effect occurs at an albedo value (critical albedo) just above 0.2 in the mid-visible wavelength range. In a companion paper, we use the techniques introduced here to generalize our findings to all 2016 and 2017 measurements and parameterize aerosol radiative effects.</p>https://www.atmos-meas-tech.net/12/6505/2019/amt-12-6505-2019.pdf