Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses
Abstract Background Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry (Cerasus humilis) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2017-05-01
|
Series: | Proteome Science |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12953-017-0117-1 |
id |
doaj-d1beb46519d34f2886f500b99684ca28 |
---|---|
record_format |
Article |
spelling |
doaj-d1beb46519d34f2886f500b99684ca282020-11-25T02:52:08ZengBMCProteome Science1477-59562017-05-0115111610.1186/s12953-017-0117-1Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analysesZepeng Yin0Jing Ren1Lijuan Zhou2Lina Sun3Jiewan Wang4Yulong Liu5Xingshun Song6Department of Genetics, College of Life Science, Northeast Forestry UniversityCollege of Food Science; Key Laboratory of Dairy Science, Ministry of Education, Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural UniversityDepartment of Genetics, College of Life Science, Northeast Forestry UniversityDepartment of Genetics, College of Life Science, Northeast Forestry UniversityDepartment of Genetics, College of Life Science, Northeast Forestry UniversityForest Engineering and Environment Research Institute of Heilongjiang ProvinceDepartment of Genetics, College of Life Science, Northeast Forestry UniversityAbstract Background Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry (Cerasus humilis) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. Methods Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. Results Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis. Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. Conclusions WD promoted the CO2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under WD.http://link.springer.com/article/10.1186/s12953-017-0117-1Cerasus humilisProteomicsROSWater deficitPerennial shrubsqRT-PCR |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zepeng Yin Jing Ren Lijuan Zhou Lina Sun Jiewan Wang Yulong Liu Xingshun Song |
spellingShingle |
Zepeng Yin Jing Ren Lijuan Zhou Lina Sun Jiewan Wang Yulong Liu Xingshun Song Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses Proteome Science Cerasus humilis Proteomics ROS Water deficit Perennial shrubs qRT-PCR |
author_facet |
Zepeng Yin Jing Ren Lijuan Zhou Lina Sun Jiewan Wang Yulong Liu Xingshun Song |
author_sort |
Zepeng Yin |
title |
Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses |
title_short |
Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses |
title_full |
Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses |
title_fullStr |
Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses |
title_full_unstemmed |
Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses |
title_sort |
water deficit mechanisms in perennial shrubs cerasus humilis leaves revealed by physiological and proteomic analyses |
publisher |
BMC |
series |
Proteome Science |
issn |
1477-5956 |
publishDate |
2017-05-01 |
description |
Abstract Background Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry (Cerasus humilis) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. Methods Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. Results Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis. Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. Conclusions WD promoted the CO2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under WD. |
topic |
Cerasus humilis Proteomics ROS Water deficit Perennial shrubs qRT-PCR |
url |
http://link.springer.com/article/10.1186/s12953-017-0117-1 |
work_keys_str_mv |
AT zepengyin waterdeficitmechanismsinperennialshrubscerasushumilisleavesrevealedbyphysiologicalandproteomicanalyses AT jingren waterdeficitmechanismsinperennialshrubscerasushumilisleavesrevealedbyphysiologicalandproteomicanalyses AT lijuanzhou waterdeficitmechanismsinperennialshrubscerasushumilisleavesrevealedbyphysiologicalandproteomicanalyses AT linasun waterdeficitmechanismsinperennialshrubscerasushumilisleavesrevealedbyphysiologicalandproteomicanalyses AT jiewanwang waterdeficitmechanismsinperennialshrubscerasushumilisleavesrevealedbyphysiologicalandproteomicanalyses AT yulongliu waterdeficitmechanismsinperennialshrubscerasushumilisleavesrevealedbyphysiologicalandproteomicanalyses AT xingshunsong waterdeficitmechanismsinperennialshrubscerasushumilisleavesrevealedbyphysiologicalandproteomicanalyses |
_version_ |
1724731133983195136 |