MicroRNAs and the Regulation of Tau Metabolism

Abnormal regulation of tau phosphorylation and/or alternative splicing is associated with the development of a large (>20) group of neurodegenerative disorders collectively known as tauopathies, the most common being Alzheimer's disease. Despite intensive research, little is known about the...

Full description

Bibliographic Details
Main Authors: Sébastien S. Hébert, Nicolas Sergeant, Luc Buée
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:International Journal of Alzheimer's Disease
Online Access:http://dx.doi.org/10.1155/2012/406561
Description
Summary:Abnormal regulation of tau phosphorylation and/or alternative splicing is associated with the development of a large (>20) group of neurodegenerative disorders collectively known as tauopathies, the most common being Alzheimer's disease. Despite intensive research, little is known about the molecular mechanisms that participate in the transcriptional and posttranscriptional regulation of endogenous tau, especially in neurons. Recently, we showed that mice lacking Dicer in the forebrain displayed progressive neurodegeneration accompanied by disease-like changes in tau phosphorylation and splicing. Dicer is a key enzyme in the biogenesis of microRNAs (miRNAs), small noncoding RNAs that function as part of the RNA-induced silencing complex (RISC) to repress gene expression at the posttranscriptional level. We identified miR-16 and miR-132 as putative endogenous modulators of neuronal tau phosphorylation and tau exon 10 splicing, respectively. Interestingly, these miRNAs have been implicated in cell survival and function, whereas changes in miR-16/132 levels correlate with tau pathology in human neurodegenerative disorders. Thus, understanding how miRNA networks influence tau metabolism and possibly other biological systems might provide important clues into the molecular causes of tauopathies, particularly the more common but less understood sporadic forms.
ISSN:2090-8024
2090-0252