Solutions of the neutral differential-difference equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t)
Particular solutions and complementary functions are obtained for the functional equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) in the forms of a convolution type integral and of infinite series.
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1992-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171292001005 |
Summary: | Particular solutions and complementary functions are obtained for the functional equation αx′(t)+βx′(t−r)+γx(t)+δx(t−r)=f(t) in the forms of a convolution type integral and of infinite series. |
---|---|
ISSN: | 0161-1712 1687-0425 |