In vitro antimycobacterial activity and toxicity of eight medicinal plants against pathogenic and nonpathogenic mycobacterial strains

Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a serious public health challenge towards which new hits are urgently needed. Medicinal plants remains a major source of new ligands against global infectious illnesses. In our laboratories, we are currently investigating locally used et...

Full description

Bibliographic Details
Main Authors: Joseph M Nguta, Regina Appiah-Opong, Alexander K Nyarko, Dorothy Yeboah-Manu, Phyllis G. A Addo, Isaac Darko Otchere, Abena Kissi-Twum
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2016-01-01
Series:International Journal of Mycobacteriology
Subjects:
Online Access:http://www.ijmyco.org/article.asp?issn=2212-5531;year=2016;volume=5;issue=5;spage=106;epage=107;aulast=Nguta
Description
Summary:Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a serious public health challenge towards which new hits are urgently needed. Medicinal plants remains a major source of new ligands against global infectious illnesses. In our laboratories, we are currently investigating locally used ethnobotanicals for novel compounds against zoonotic tuberculosis. The microplate alamar blue assay (MABA) was used to study the anti-TB activity while the CellTiter 96® AQueous Assay, which is composed of solutions of a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate) PMS, was used for cytotoxic studies. Correlation coefficients (R2) were used to compare the relationship between antimycobacterial activity of the eight crude extracts against nonpathogenic strains and the pathogenic Mycobacterium bovis. Minimum inhibitory concentration (MICs) values indicated that all the eight tested medicinal plant species had activity against all the three tested mycobacterial strains. Minimum inhibitory concentration value as low as 19.5 μg/mL was observed against non-pathogenic strains M. bovis. Activity of the crude extracts against M. aurum was the best predictor of natural product activity against the pathogenic Mycobacterium bovis strain, with a correlation coefficient value (R2) of 0.1371. Results obtained from the current study validate, in part, the traditional utilization of the tested medicinal plants against tuberculosis. The unripe fruits from Solanum torvum are a potential source of safe and efficacious anti-TB crude drugs as well as a source for natural compounds that act as new anti-infection agents, and thus deserve further investigation towards development of a new class of molecules with activity against sensitive and drug resistant strains of M. bovis.
ISSN:2212-5531
2212-554X