Tax Evasion and Multi-Agent-Based Model on Various Topologies
In this work, we use Monte-Carlo simulations to study the control of the fluctuations for tax evasion in the economics model proposed by [G. Zaklan, F. Westerhoff and D. Stauffer, J. Econ. Interact. Coordination. 4 (2009) 1; G. Zaklam, F.W.S. Lima and F. Westerhofd, Physica A 387 (2008) 5857.] via a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
World Scientific Publishing
2017-06-01
|
Series: | Reports in Advances of Physical Sciences |
Subjects: | |
Online Access: | http://www.worldscientific.com/doi/pdf/10.1142/S242494241730001X |
Summary: | In this work, we use Monte-Carlo simulations to study the control of the fluctuations for tax evasion in the economics model proposed by [G. Zaklan, F. Westerhoff and D. Stauffer, J. Econ. Interact. Coordination. 4 (2009) 1; G. Zaklam, F.W.S. Lima and F. Westerhofd, Physica A 387 (2008) 5857.] via a nonequilibrium model with two states (−1,+1) and a noise q proposed for [M. J. Oliveira, J. Stat. Phys. 66 (1992) 273] and known as Majority-Vote model (MVM) and Sánchez–López-Rodríguez model on communities of agents or persons on some topologies as directed and undirected Barabási–Albert networks and Erdös–Rényi random graphs, Apollonian networks, directed small-world networks and Stauffer–Hohnisch–Pittnauer networks. The MVM is applied around the noise critical qc to evolve the Zaklan model. |
---|---|
ISSN: | 2424-9424 2529-752X |