Tax Evasion and Multi-Agent-Based Model on Various Topologies

In this work, we use Monte-Carlo simulations to study the control of the fluctuations for tax evasion in the economics model proposed by [G. Zaklan, F. Westerhoff and D. Stauffer, J. Econ. Interact. Coordination. 4 (2009) 1; G. Zaklam, F.W.S. Lima and F. Westerhofd, Physica A 387 (2008) 5857.] via a...

Full description

Bibliographic Details
Main Author: F. W. S. Lima
Format: Article
Language:English
Published: World Scientific Publishing 2017-06-01
Series:Reports in Advances of Physical Sciences
Subjects:
Online Access:http://www.worldscientific.com/doi/pdf/10.1142/S242494241730001X
Description
Summary:In this work, we use Monte-Carlo simulations to study the control of the fluctuations for tax evasion in the economics model proposed by [G. Zaklan, F. Westerhoff and D. Stauffer, J. Econ. Interact. Coordination. 4 (2009) 1; G. Zaklam, F.W.S. Lima and F. Westerhofd, Physica A 387 (2008) 5857.] via a nonequilibrium model with two states (−1,+1) and a noise q proposed for [M. J. Oliveira, J. Stat. Phys. 66 (1992) 273] and known as Majority-Vote model (MVM) and Sánchez–López-Rodríguez model on communities of agents or persons on some topologies as directed and undirected Barabási–Albert networks and Erdös–Rényi random graphs, Apollonian networks, directed small-world networks and Stauffer–Hohnisch–Pittnauer networks. The MVM is applied around the noise critical qc to evolve the Zaklan model.
ISSN:2424-9424
2529-752X