Gravitational deflection of massive particles in Schwarzschild-de Sitter spacetime

Abstract In this paper, the gravitational deflection of a relativistic massive neutral particle in the Schwarzschild-de Sitter spacetime is studied via the Rindler–Ishak method in the weak-field limit. When the initial velocity $$v_0$$ v 0 of the particle tends to the speed of light, the result is c...

Full description

Bibliographic Details
Main Authors: Guansheng He, Xia Zhou, Zhongwen Feng, Xueling Mu, Hui Wang, Weijun Li, Chaohong Pan, Wenbin Lin
Format: Article
Language:English
Published: SpringerOpen 2020-09-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-020-8382-z
Description
Summary:Abstract In this paper, the gravitational deflection of a relativistic massive neutral particle in the Schwarzschild-de Sitter spacetime is studied via the Rindler–Ishak method in the weak-field limit. When the initial velocity $$v_0$$ v 0 of the particle tends to the speed of light, the result is consistent with that obtained in the previous work for the light-bending case. Our result is reduced to the Schwarzschild deflection angle of massive particles up to the second order, if the contributions from the cosmological constant $$\varLambda $$ Λ are dropped. The observable correctional effects due to the deviation of $$v_0$$ v 0 from light speed on the $$\varLambda $$ Λ -induced contributions to the deflection angle of light are also analyzed.
ISSN:1434-6044
1434-6052