A Metabolomics-Inspired Strategy for the Identification of Protein Covalent Modifications

Identification of protein covalent modifications (adducts) is a challenging task mainly due to the lack of data processing approaches for adductomics studies. Despite the huge technological advances in mass spectrometry (MS) instrumentation and bioinformatics tools for proteomics studies, these meth...

Full description

Bibliographic Details
Main Authors: João Nunes, Catarina Charneira, Carolina Nunes, Sofia Gouveia-Fernandes, Jacinta Serpa, Judit Morello, Alexandra M. M. Antunes
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-07-01
Series:Frontiers in Chemistry
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fchem.2019.00532/full
Description
Summary:Identification of protein covalent modifications (adducts) is a challenging task mainly due to the lack of data processing approaches for adductomics studies. Despite the huge technological advances in mass spectrometry (MS) instrumentation and bioinformatics tools for proteomics studies, these methodologies have very limited success on the identification of low abundant protein adducts. Herein we report a novel strategy inspired on the metabolomics workflows for the identification of covalently-modified peptides that consists on LC-MS data preprocessing followed by statistical analysis. The usefulness of this strategy was evaluated using experimental LC-MS data of histones isolated from HepG2 and THLE2 cells exposed to the chemical carcinogen glycidamide. LC-MS data was preprocessed using the open-source software MZmine and potential adducts were selected based on the m/z increments corresponding to glycidamide incorporation. Then, statistical analysis was applied to reveal the potential adducts as those ions are differently present in cells exposed and not exposed to glycidamide. The results were compared with the ones obtained upon the standard proteomics methodology, which relies on producing comprehensive MS/MS data by data dependent acquisition and analysis with proteomics data search engines. Our novel strategy was able to differentiate HepG2 and THLE2 and to identify adducts that were not detected by the standard methodology of adductomics. Thus, this metabolomics driven approach in adductomics will not only open new opportunities for the identification of protein epigenetic modifications, but also adducts formed by endogenous and exogenous exposure to chemical agents.
ISSN:2296-2646