Fossil vs. Active Geothermal Systems: A Field and Laboratory Method to Disclose the Relationships between Geothermal Fluid Flow and Geological Structures at Depth

Comparison between fossil and analogue active geothermal systems permit to obtain key-parameters to define a conceptual model of the area under exploration. The approach is based on structural, kinematic, and fluid inclusions analyses. The fossil system is investigated to describe the distribution o...

Full description

Bibliographic Details
Main Authors: Domenico Liotta, Andrea Brogi, Giovanni Ruggieri, Martina Zucchi
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/4/933
Description
Summary:Comparison between fossil and analogue active geothermal systems permit to obtain key-parameters to define a conceptual model of the area under exploration. The approach is based on structural, kinematic, and fluid inclusions analyses. The fossil system is investigated to describe the distribution of the hydrothermal mineralization as witness of the fluid flow through geological structures and bodies, at depth. Structural and kinematic data (to define the preferential direction of fluid flow) are collected in structural stations and by scan lines and scan boxes on key outcrops. Distribution, length, width of fractures, and hydrothermal veins bring to evaluate permeability in the fossil system and, by analogy, in the deep roots of the active system. Fluid inclusions analysis shed light on density, viscosity, and temperature of the paleo-fluids. Data integration provides the hydraulic conductivity. In active geothermal systems, fieldwork is addressed to paleo-stress analysis with data from recent faults (<2 Ma), to compare with local focal mechanisms. By this, indications on the present fluid pathways are given. The main advantage resides in obtaining parameters normally got after drilling, thus contributing to strengthen the strategy of exploration, de-risking unsuccessful boreholes.
ISSN:1996-1073