Kinetics of Phosphorus Transfer during Industrial Electroslag Remelting of G20CrNi2Mo Bearing Steel

Phosphorus is undesirable in steel for it greatly decreases ductility and causes embrittlement in most cases. The kinetic behavior of phosphorus transfer was investigated during electroslag remelting (ESR) of G20CrNi2Mo bearing steel. Four heat treatments were carried out using an industrial furnace...

Full description

Bibliographic Details
Main Authors: Shijian Li, Guoguang Cheng, Yu Huang, Weixing Dai, Zhiqi Miao
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/9/4/467
Description
Summary:Phosphorus is undesirable in steel for it greatly decreases ductility and causes embrittlement in most cases. The kinetic behavior of phosphorus transfer was investigated during electroslag remelting (ESR) of G20CrNi2Mo bearing steel. Four heat treatments were carried out using an industrial furnace with a capacity to refine 2400 kg ingot. It was found the P content in the four ingots were all higher than that in the electrodes, indicating rephosphorization occurs during ESR. A kinetic model based on film and penetration theory was developed to elucidate the variation of phosphorus from metal film to droplet and metal pool. The model indicates that the rate-determining step of phosphorus transfer is at the slag side. Rephosphorization mainly occurs in the metal film and falling droplet. In addition, the effect of P in the slag and electrode, as well as the temperature of the slag pool on the P content in the metal pool were discussed. In order to achieve a low-P ingot of no more than 0.015%, the corresponding maximum P content in slag under the condition of a certain P content in the electrode was proposed.
ISSN:2075-4701