Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function

Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization,...

Full description

Bibliographic Details
Main Authors: Ashish K. Solanki, Manas R. Biswal, Stephen Walterhouse, René Martin, Altaf A. Kondkar, Hans-Joachim Knölker, Bushra Rahman, Ehtesham Arif, Shahid Husain, Sandra R. Montezuma, Deepak Nihalani, Glenn Prazere Lobo
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/10/6/1322
Description
Summary:Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of <i>Myo1c</i> knockout (<i>Myo1c</i>-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In <i>Myo1c</i>-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of <i>Myo1c</i>-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.
ISSN:2073-4409