A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia

Summary: Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcripti...

Full description

Bibliographic Details
Main Authors: Jeroen Baardman, Sanne G.S. Verberk, Koen H.M. Prange, Michel van Weeghel, Saskia van der Velden, Dylan G. Ryan, Rob C.I. Wüst, Annette E. Neele, Dave Speijer, Simone W. Denis, Maarten E. Witte, Riekelt H. Houtkooper, Luke A. O’neill, Elena V. Knatko, Albena T. Dinkova-Kostova, Esther Lutgens, Menno P.J. de Winther, Jan Van den Bossche
Format: Article
Language:English
Published: Elsevier 2018-11-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124718316966
id doaj-d4969ea3a1584cdbbc7e5b1d85f55612
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Jeroen Baardman
Sanne G.S. Verberk
Koen H.M. Prange
Michel van Weeghel
Saskia van der Velden
Dylan G. Ryan
Rob C.I. Wüst
Annette E. Neele
Dave Speijer
Simone W. Denis
Maarten E. Witte
Riekelt H. Houtkooper
Luke A. O’neill
Elena V. Knatko
Albena T. Dinkova-Kostova
Esther Lutgens
Menno P.J. de Winther
Jan Van den Bossche
spellingShingle Jeroen Baardman
Sanne G.S. Verberk
Koen H.M. Prange
Michel van Weeghel
Saskia van der Velden
Dylan G. Ryan
Rob C.I. Wüst
Annette E. Neele
Dave Speijer
Simone W. Denis
Maarten E. Witte
Riekelt H. Houtkooper
Luke A. O’neill
Elena V. Knatko
Albena T. Dinkova-Kostova
Esther Lutgens
Menno P.J. de Winther
Jan Van den Bossche
A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
Cell Reports
author_facet Jeroen Baardman
Sanne G.S. Verberk
Koen H.M. Prange
Michel van Weeghel
Saskia van der Velden
Dylan G. Ryan
Rob C.I. Wüst
Annette E. Neele
Dave Speijer
Simone W. Denis
Maarten E. Witte
Riekelt H. Houtkooper
Luke A. O’neill
Elena V. Knatko
Albena T. Dinkova-Kostova
Esther Lutgens
Menno P.J. de Winther
Jan Van den Bossche
author_sort Jeroen Baardman
title A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
title_short A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
title_full A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
title_fullStr A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
title_full_unstemmed A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia
title_sort defective pentose phosphate pathway reduces inflammatory macrophage responses during hypercholesterolemia
publisher Elsevier
series Cell Reports
issn 2211-1247
publishDate 2018-11-01
description Summary: Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function. : The link between systemic and cellular metabolism is a neglected aspect in immunometabolism. Baardman et al. show that hypercholesterolemia alters macrophage metabolism and phenotype. The suppressed pentose phosphate pathway (PPP) in those “foam cell” macrophages attenuates inflammatory responses, signifying that systemic and cellular metabolism together regulate macrophage function. Keywords: immunometabolism, inflammation, macrophages, hypercholesterolemia, pentose phosphate pathway, Nrf2, meta-inflammation, foam cells, atherosclerosis, cardiovascular disease, metabolic disease
url http://www.sciencedirect.com/science/article/pii/S2211124718316966
work_keys_str_mv AT jeroenbaardman adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT sannegsverberk adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT koenhmprange adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT michelvanweeghel adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT saskiavandervelden adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT dylangryan adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT robciwust adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT annetteeneele adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT davespeijer adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT simonewdenis adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT maartenewitte adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT riekelthhoutkooper adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT lukeaoneill adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT elenavknatko adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT albenatdinkovakostova adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT estherlutgens adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT mennopjdewinther adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT janvandenbossche adefectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT jeroenbaardman defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT sannegsverberk defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT koenhmprange defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT michelvanweeghel defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT saskiavandervelden defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT dylangryan defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT robciwust defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT annetteeneele defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT davespeijer defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT simonewdenis defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT maartenewitte defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT riekelthhoutkooper defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT lukeaoneill defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT elenavknatko defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT albenatdinkovakostova defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT estherlutgens defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT mennopjdewinther defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
AT janvandenbossche defectivepentosephosphatepathwayreducesinflammatorymacrophageresponsesduringhypercholesterolemia
_version_ 1725340099601760256
spelling doaj-d4969ea3a1584cdbbc7e5b1d85f556122020-11-25T00:27:23ZengElsevierCell Reports2211-12472018-11-0125820442052.e5A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during HypercholesterolemiaJeroen Baardman0Sanne G.S. Verberk1Koen H.M. Prange2Michel van Weeghel3Saskia van der Velden4Dylan G. Ryan5Rob C.I. Wüst6Annette E. Neele7Dave Speijer8Simone W. Denis9Maarten E. Witte10Riekelt H. Houtkooper11Luke A. O’neill12Elena V. Knatko13Albena T. Dinkova-Kostova14Esther Lutgens15Menno P.J. de Winther16Jan Van den Bossche17Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ Amsterdam, the NetherlandsAmsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsAmsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsAmsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsSchool of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, IrelandAmsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsAmsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsAmsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsAmsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ Amsterdam, the NetherlandsAmsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the NetherlandsSchool of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, IrelandJacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UKJacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USAAmsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Pettenkoferstrasse 9, 80336 Munich, GermanyAmsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Pettenkoferstrasse 9, 80336 Munich, GermanyAmsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HZ Amsterdam, the Netherlands; Corresponding authorSummary: Metabolic reprogramming has emerged as a crucial regulator of immune cell activation, but how systemic metabolism influences immune cell metabolism and function remains to be investigated. To investigate the effect of dyslipidemia on immune cell metabolism, we performed in-depth transcriptional, metabolic, and functional characterization of macrophages isolated from hypercholesterolemic mice. Systemic metabolic changes in such mice alter cellular macrophage metabolism and attenuate inflammatory macrophage responses. In addition to diminished maximal mitochondrial respiration, hypercholesterolemia reduces the LPS-mediated induction of the pentose phosphate pathway (PPP) and the Nrf2-mediated oxidative stress response. Our observation that suppression of the PPP diminishes LPS-induced cytokine secretion supports the notion that this pathway contributes to inflammatory macrophage responses. Overall, this study reveals that systemic and cellular metabolism are strongly interconnected, together dictating macrophage phenotype and function. : The link between systemic and cellular metabolism is a neglected aspect in immunometabolism. Baardman et al. show that hypercholesterolemia alters macrophage metabolism and phenotype. The suppressed pentose phosphate pathway (PPP) in those “foam cell” macrophages attenuates inflammatory responses, signifying that systemic and cellular metabolism together regulate macrophage function. Keywords: immunometabolism, inflammation, macrophages, hypercholesterolemia, pentose phosphate pathway, Nrf2, meta-inflammation, foam cells, atherosclerosis, cardiovascular disease, metabolic diseasehttp://www.sciencedirect.com/science/article/pii/S2211124718316966