JACOBI TRANSFORM OF \((\nu, \gamma, p)\)-JACOBI–LIPSCHITZ FUNCTIONS IN THE SPACE \(\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)\)
Using a generalized translation operator, we obtain an analog of Younis' theorem [Theorem 5.2, Younis M.S. Fourier transforms of Dini–Lipschitz functions, Int. J. Math. Math. Sci., 1986] for the Jacobi transform for functions from the \((\nu, \gamma, p)\)-Jacobi–Lipschitz class in the space \(\...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin.
2019-07-01
|
Series: | Ural Mathematical Journal |
Online Access: | https://umjuran.ru/index.php/umj/article/view/122 |