Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries

The electrolyte is one of the three essential constituents of a Lithium-Ion battery (LiB) in addition to the anode and cathode. During increasingly high power and high current charging and discharging, the requirement for the electrolyte becomes more strict. Solid State Electrolyte (SSE) sees its ni...

Full description

Bibliographic Details
Main Authors: Robert Bock, Morten Onsrud, Håvard Karoliussen, Bruno G. Pollet, Frode Seland, Odne S. Burheim
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/1/253
id doaj-d5638c4e814042c6abb25ad54b974d5b
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Robert Bock
Morten Onsrud
Håvard Karoliussen
Bruno G. Pollet
Frode Seland
Odne S. Burheim
spellingShingle Robert Bock
Morten Onsrud
Håvard Karoliussen
Bruno G. Pollet
Frode Seland
Odne S. Burheim
Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries
Energies
lithium ion
solid state electrolyte
li ion
thermal conductivity
sintering
author_facet Robert Bock
Morten Onsrud
Håvard Karoliussen
Bruno G. Pollet
Frode Seland
Odne S. Burheim
author_sort Robert Bock
title Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries
title_short Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries
title_full Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries
title_fullStr Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries
title_full_unstemmed Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries
title_sort thermal gradients with sintered solid state electrolytes in lithium-ion batteries
publisher MDPI AG
series Energies
issn 1996-1073
publishDate 2020-01-01
description The electrolyte is one of the three essential constituents of a Lithium-Ion battery (LiB) in addition to the anode and cathode. During increasingly high power and high current charging and discharging, the requirement for the electrolyte becomes more strict. Solid State Electrolyte (SSE) sees its niche for high power applications due to its ability to suppress concentration polarization and otherwise stable properties also related to safety. During high power and high current cycling, heat management becomes more important and thermal conductivity measurements are needed. In this work, thermal conductivity was measured for three types of solid state electrolytes: Li<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>7</mn> </msub> </semantics> </math> </inline-formula>La<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>Zr<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>12</mn> </msub> </semantics> </math> </inline-formula> (LLZO), Li<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>1.5</mn> </mrow> </msub> </semantics> </math> </inline-formula>Al<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>0.5</mn> </mrow> </msub> </semantics> </math> </inline-formula>Ge<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>1.5</mn> </mrow> </msub> </semantics> </math> </inline-formula>(PO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>)<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> (LAGP), and Li<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>1.3</mn> </mrow> </msub> </semantics> </math> </inline-formula>Al<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>0.3</mn> </mrow> </msub> </semantics> </math> </inline-formula>Ti<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>1.7</mn> </mrow> </msub> </semantics> </math> </inline-formula>(PO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>)<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> (LATP) at different compaction pressures. LAGP and LATP were measured after sintering, and LLZO was measured before and after sintering the sample material. Thermal conductivity for the sintered electrolytes was measured to 0.470 &#177; 0.009 WK<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>, 0.5 &#177; 0.2 WK<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> and 0.49 &#177; 0.02 WK<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> for LLZO, LAGP, and LATP respectively. Before sintering, LLZO showed a thermal conductivity of 0.22 &#177; 0.02 WK<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>. An analytical temperature distribution model for a battery stack of 24 cells shows temperature differences between battery center and edge of 1&#8722;2 K for standard liquid electrolytes and 7&#8722;9 K for solid state electrolytes, both at the same C-rate of four.
topic lithium ion
solid state electrolyte
li ion
thermal conductivity
sintering
url https://www.mdpi.com/1996-1073/13/1/253
work_keys_str_mv AT robertbock thermalgradientswithsinteredsolidstateelectrolytesinlithiumionbatteries
AT mortenonsrud thermalgradientswithsinteredsolidstateelectrolytesinlithiumionbatteries
AT havardkaroliussen thermalgradientswithsinteredsolidstateelectrolytesinlithiumionbatteries
AT brunogpollet thermalgradientswithsinteredsolidstateelectrolytesinlithiumionbatteries
AT frodeseland thermalgradientswithsinteredsolidstateelectrolytesinlithiumionbatteries
AT odnesburheim thermalgradientswithsinteredsolidstateelectrolytesinlithiumionbatteries
_version_ 1725036154923778048
spelling doaj-d5638c4e814042c6abb25ad54b974d5b2020-11-25T01:42:27ZengMDPI AGEnergies1996-10732020-01-0113125310.3390/en13010253en13010253Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion BatteriesRobert Bock0Morten Onsrud1Håvard Karoliussen2Bruno G. Pollet3Frode Seland4Odne S. Burheim5Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayNORSIRK AS, NO-0663 Oslo, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayDepartment of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayDepartment of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, NorwayThe electrolyte is one of the three essential constituents of a Lithium-Ion battery (LiB) in addition to the anode and cathode. During increasingly high power and high current charging and discharging, the requirement for the electrolyte becomes more strict. Solid State Electrolyte (SSE) sees its niche for high power applications due to its ability to suppress concentration polarization and otherwise stable properties also related to safety. During high power and high current cycling, heat management becomes more important and thermal conductivity measurements are needed. In this work, thermal conductivity was measured for three types of solid state electrolytes: Li<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>7</mn> </msub> </semantics> </math> </inline-formula>La<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>Zr<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>O<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>12</mn> </msub> </semantics> </math> </inline-formula> (LLZO), Li<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>1.5</mn> </mrow> </msub> </semantics> </math> </inline-formula>Al<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>0.5</mn> </mrow> </msub> </semantics> </math> </inline-formula>Ge<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>1.5</mn> </mrow> </msub> </semantics> </math> </inline-formula>(PO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>)<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> (LAGP), and Li<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>1.3</mn> </mrow> </msub> </semantics> </math> </inline-formula>Al<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>0.3</mn> </mrow> </msub> </semantics> </math> </inline-formula>Ti<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mrow> <mn>1.7</mn> </mrow> </msub> </semantics> </math> </inline-formula>(PO<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>)<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula> (LATP) at different compaction pressures. LAGP and LATP were measured after sintering, and LLZO was measured before and after sintering the sample material. Thermal conductivity for the sintered electrolytes was measured to 0.470 &#177; 0.009 WK<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>, 0.5 &#177; 0.2 WK<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> and 0.49 &#177; 0.02 WK<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula> for LLZO, LAGP, and LATP respectively. Before sintering, LLZO showed a thermal conductivity of 0.22 &#177; 0.02 WK<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mrow> <mo>&#8722;</mo> <mn>1</mn> </mrow> </msup> </semantics> </math> </inline-formula>. An analytical temperature distribution model for a battery stack of 24 cells shows temperature differences between battery center and edge of 1&#8722;2 K for standard liquid electrolytes and 7&#8722;9 K for solid state electrolytes, both at the same C-rate of four.https://www.mdpi.com/1996-1073/13/1/253lithium ionsolid state electrolyteli ionthermal conductivitysintering