Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies

We applied first-principles electronic structure calculations to study structural, thermodynamic and elastic properties of nanocomposites exhibiting nearly perfect match of constituting phases. In particular, two combinations of transition-metal disilicides and one pair of magnetic phases containing...

Full description

Bibliographic Details
Main Authors: Martin Friák, David Holec, Mojmír Šob
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/8/12/1057
id doaj-d5e101ddc9f14d9bacf7331084afa239
record_format Article
spelling doaj-d5e101ddc9f14d9bacf7331084afa2392020-11-25T00:17:49ZengMDPI AGNanomaterials2079-49912018-12-01812105710.3390/nano8121057nano8121057Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface EnergiesMartin Friák0David Holec1Mojmír Šob2Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, CZ-616 62 Brno, Czech RepublicDepartment of Materials Science, Montanuniversität Leoben, Franz-Josef-Strasse 18, A-8700 Leoben, AustriaDepartment of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech RepublicWe applied first-principles electronic structure calculations to study structural, thermodynamic and elastic properties of nanocomposites exhibiting nearly perfect match of constituting phases. In particular, two combinations of transition-metal disilicides and one pair of magnetic phases containing the Fe and Al atoms with different atomic ordering were considered. Regarding the disilicides, nanocomposites MoSi<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>/WSi<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> with constituents crystallizing in the tetragonal C11<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mi>b</mi> </msub> </semantics> </math> </inline-formula> structure and TaSi<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>/NbSi<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> with individual phases crystallizing in the hexagonal C40 structure were simulated. Constituents within each pair of materials exhibit very similar structural and elastic properties and for their nanocomposites we obtained ultra-low (nearly zero) interface energy (within the error bar of our calculations, i.e., about 0.005 J/m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>2</mn> </msup> </semantics> </math> </inline-formula>). The interface energy was found to be nearly independent on the width of individual constituents within the nanocomposites and/or crystallographic orientation of the interfaces. As far as the nanocomposites containing Fe and Al were concerned, we simulated coherent superlattices formed by an ordered Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>Al intermetallic compound and a disordered Fe-Al phase with 18.75 at.% Al, the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-phase. Both phases were structurally and elastically quite similar but the disordered <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-phase lacked a long-range periodicity. To determine the interface energy in these nanocomposites, we simulated seven different distributions of atoms in the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-phase interfacing the Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>Al intermetallic compound. The resulting interface energies ranged from ultra low to low values, i.e., from 0.005 to 0.139 J/m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>2</mn> </msup> </semantics> </math> </inline-formula>. The impact of atomic distribution on the elastic properties was found insignificant but local magnetic moments of the iron atoms depend sensitively on the type and distribution of surrounding atoms.https://www.mdpi.com/2079-4991/8/12/1057MoSi<sub>2</sub>WSi<sub>2</sub>TaSi<sub>2</sub>NbSi<sub>2</sub>elasticityab initiointerface energiesFe<sub>3</sub>Aldisorder
collection DOAJ
language English
format Article
sources DOAJ
author Martin Friák
David Holec
Mojmír Šob
spellingShingle Martin Friák
David Holec
Mojmír Šob
Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies
Nanomaterials
MoSi<sub>2</sub>
WSi<sub>2</sub>
TaSi<sub>2</sub>
NbSi<sub>2</sub>
elasticity
ab initio
interface energies
Fe<sub>3</sub>Al
disorder
author_facet Martin Friák
David Holec
Mojmír Šob
author_sort Martin Friák
title Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies
title_short Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies
title_full Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies
title_fullStr Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies
title_full_unstemmed Quantum-Mechanical Study of Nanocomposites with Low and Ultra-Low Interface Energies
title_sort quantum-mechanical study of nanocomposites with low and ultra-low interface energies
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2018-12-01
description We applied first-principles electronic structure calculations to study structural, thermodynamic and elastic properties of nanocomposites exhibiting nearly perfect match of constituting phases. In particular, two combinations of transition-metal disilicides and one pair of magnetic phases containing the Fe and Al atoms with different atomic ordering were considered. Regarding the disilicides, nanocomposites MoSi<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>/WSi<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> with constituents crystallizing in the tetragonal C11<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mi>b</mi> </msub> </semantics> </math> </inline-formula> structure and TaSi<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>/NbSi<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula> with individual phases crystallizing in the hexagonal C40 structure were simulated. Constituents within each pair of materials exhibit very similar structural and elastic properties and for their nanocomposites we obtained ultra-low (nearly zero) interface energy (within the error bar of our calculations, i.e., about 0.005 J/m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>2</mn> </msup> </semantics> </math> </inline-formula>). The interface energy was found to be nearly independent on the width of individual constituents within the nanocomposites and/or crystallographic orientation of the interfaces. As far as the nanocomposites containing Fe and Al were concerned, we simulated coherent superlattices formed by an ordered Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>Al intermetallic compound and a disordered Fe-Al phase with 18.75 at.% Al, the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-phase. Both phases were structurally and elastically quite similar but the disordered <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-phase lacked a long-range periodicity. To determine the interface energy in these nanocomposites, we simulated seven different distributions of atoms in the <inline-formula> <math display="inline"> <semantics> <mi>α</mi> </semantics> </math> </inline-formula>-phase interfacing the Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>3</mn> </msub> </semantics> </math> </inline-formula>Al intermetallic compound. The resulting interface energies ranged from ultra low to low values, i.e., from 0.005 to 0.139 J/m<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>2</mn> </msup> </semantics> </math> </inline-formula>. The impact of atomic distribution on the elastic properties was found insignificant but local magnetic moments of the iron atoms depend sensitively on the type and distribution of surrounding atoms.
topic MoSi<sub>2</sub>
WSi<sub>2</sub>
TaSi<sub>2</sub>
NbSi<sub>2</sub>
elasticity
ab initio
interface energies
Fe<sub>3</sub>Al
disorder
url https://www.mdpi.com/2079-4991/8/12/1057
work_keys_str_mv AT martinfriak quantummechanicalstudyofnanocompositeswithlowandultralowinterfaceenergies
AT davidholec quantummechanicalstudyofnanocompositeswithlowandultralowinterfaceenergies
AT mojmirsob quantummechanicalstudyofnanocompositeswithlowandultralowinterfaceenergies
_version_ 1725378105336397824