Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation

A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), whi...

Full description

Bibliographic Details
Main Authors: A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, M. Müller
Format: Article
Language:English
Published: American Physical Society 2017-12-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.7.041061
id doaj-d616c82dc096427ea27b327cfa283979
record_format Article
spelling doaj-d616c82dc096427ea27b327cfa2839792020-11-24T23:16:14ZengAmerican Physical SocietyPhysical Review X2160-33082017-12-017404106110.1103/PhysRevX.7.041061Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum ComputationA. BermudezX. XuR. NigmatullinJ. O’GormanV. NegnevitskyP. SchindlerT. MonzU. G. PoschingerC. HempelJ. HomeF. Schmidt-KalerM. BiercukR. BlattS. BenjaminM. MüllerA quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that will be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC and a physically motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realized in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements described here, this platform is a very promising candidate for fault-tolerant quantum computation.http://doi.org/10.1103/PhysRevX.7.041061
collection DOAJ
language English
format Article
sources DOAJ
author A. Bermudez
X. Xu
R. Nigmatullin
J. O’Gorman
V. Negnevitsky
P. Schindler
T. Monz
U. G. Poschinger
C. Hempel
J. Home
F. Schmidt-Kaler
M. Biercuk
R. Blatt
S. Benjamin
M. Müller
spellingShingle A. Bermudez
X. Xu
R. Nigmatullin
J. O’Gorman
V. Negnevitsky
P. Schindler
T. Monz
U. G. Poschinger
C. Hempel
J. Home
F. Schmidt-Kaler
M. Biercuk
R. Blatt
S. Benjamin
M. Müller
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
Physical Review X
author_facet A. Bermudez
X. Xu
R. Nigmatullin
J. O’Gorman
V. Negnevitsky
P. Schindler
T. Monz
U. G. Poschinger
C. Hempel
J. Home
F. Schmidt-Kaler
M. Biercuk
R. Blatt
S. Benjamin
M. Müller
author_sort A. Bermudez
title Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_short Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_full Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_fullStr Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_full_unstemmed Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
title_sort assessing the progress of trapped-ion processors towards fault-tolerant quantum computation
publisher American Physical Society
series Physical Review X
issn 2160-3308
publishDate 2017-12-01
description A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that will be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC and a physically motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realized in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements described here, this platform is a very promising candidate for fault-tolerant quantum computation.
url http://doi.org/10.1103/PhysRevX.7.041061
work_keys_str_mv AT abermudez assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT xxu assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT rnigmatullin assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT jogorman assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT vnegnevitsky assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT pschindler assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT tmonz assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT ugposchinger assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT chempel assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT jhome assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT fschmidtkaler assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT mbiercuk assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT rblatt assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT sbenjamin assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
AT mmuller assessingtheprogressoftrappedionprocessorstowardsfaulttolerantquantumcomputation
_version_ 1716341170319130624