Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)
<p>The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 1...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-01-01
|
Series: | Climate of the Past |
Online Access: | https://cp.copernicus.org/articles/17/63/2021/cp-17-63-2021.pdf |
id |
doaj-d68ed8dbbf6f4cb6892ec9259adc18da |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
B. L. Otto-Bliesner E. C. Brady A. Zhao C. M. Brierley Y. Axford E. Capron A. Govin J. S. Hoffman J. S. Hoffman E. Isaacs M. Kageyama P. Scussolini P. C. Tzedakis C. J. R. Williams E. Wolff A. Abe-Ouchi P. Braconnot S. Ramos Buarque J. Cao A. de Vernal M. V. Guarino C. Guo A. N. LeGrande G. Lohmann K. J. Meissner L. Menviel P. A. Morozova K. H. Nisancioglu K. H. Nisancioglu R. O'ishi D. Salas y Mélia X. Shi M. Sicard L. Sime C. Stepanek R. Tomas E. Volodin N. K. H. Yeung Q. Zhang Z. Zhang Z. Zhang W. Zheng |
spellingShingle |
B. L. Otto-Bliesner E. C. Brady A. Zhao C. M. Brierley Y. Axford E. Capron A. Govin J. S. Hoffman J. S. Hoffman E. Isaacs M. Kageyama P. Scussolini P. C. Tzedakis C. J. R. Williams E. Wolff A. Abe-Ouchi P. Braconnot S. Ramos Buarque J. Cao A. de Vernal M. V. Guarino C. Guo A. N. LeGrande G. Lohmann K. J. Meissner L. Menviel P. A. Morozova K. H. Nisancioglu K. H. Nisancioglu R. O'ishi D. Salas y Mélia X. Shi M. Sicard L. Sime C. Stepanek R. Tomas E. Volodin N. K. H. Yeung Q. Zhang Z. Zhang Z. Zhang W. Zheng Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4) Climate of the Past |
author_facet |
B. L. Otto-Bliesner E. C. Brady A. Zhao C. M. Brierley Y. Axford E. Capron A. Govin J. S. Hoffman J. S. Hoffman E. Isaacs M. Kageyama P. Scussolini P. C. Tzedakis C. J. R. Williams E. Wolff A. Abe-Ouchi P. Braconnot S. Ramos Buarque J. Cao A. de Vernal M. V. Guarino C. Guo A. N. LeGrande G. Lohmann K. J. Meissner L. Menviel P. A. Morozova K. H. Nisancioglu K. H. Nisancioglu R. O'ishi D. Salas y Mélia X. Shi M. Sicard L. Sime C. Stepanek R. Tomas E. Volodin N. K. H. Yeung Q. Zhang Z. Zhang Z. Zhang W. Zheng |
author_sort |
B. L. Otto-Bliesner |
title |
Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4) |
title_short |
Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4) |
title_full |
Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4) |
title_fullStr |
Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4) |
title_full_unstemmed |
Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4) |
title_sort |
large-scale features of last interglacial climate: results from evaluating the <i>lig127k</i> simulations for the coupled model intercomparison project (cmip6)–paleoclimate modeling intercomparison project (pmip4) |
publisher |
Copernicus Publications |
series |
Climate of the Past |
issn |
1814-9324 1814-9332 |
publishDate |
2021-01-01 |
description |
<p>The modeling of paleoclimate, using physically based tools, is
increasingly seen as a strong out-of-sample test of the models that are used
for the projection of future climate changes. New to the Coupled Model
Intercomparison Project (CMIP6) is the Tier 1
Last Interglacial experiment for 127 000 years ago (<i>lig127k</i>), designed to
address the climate responses to stronger orbital forcing than the
<i>midHolocene</i> experiment, using the same state-of-the-art models as for the future and
following a common experimental protocol. Here we present a first analysis
of a multi-model ensemble of 17 climate models, all of which have completed
the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of
these models varies from 1.8 to 5.6 <span class="inline-formula"><sup>∘</sup></span>C. The seasonal character of
the insolation anomalies results in strong summer warming over the Northern
Hemisphere continents in the <i>lig127k</i> ensemble as compared to the CMIP6 <i>piControl</i> and
much-reduced minimum sea ice in the Arctic. The multi-model results indicate
enhanced summer monsoonal precipitation in the Northern Hemisphere and
reductions in the Southern Hemisphere. These responses are greater in the
<i>lig127k</i> than the CMIP6 <i>midHolocene</i> simulations as expected from the larger insolation anomalies
at 127 than 6 ka.</p>
<p>New synthesis for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The
<i>lig127k</i> model ensemble and data reconstructions are in good agreement for summer
temperature anomalies over Canada, Scandinavia, and the North Atlantic and
for precipitation over the Northern Hemisphere continents. The model–data
comparisons and mismatches point to further study of the sensitivity of the
simulations to uncertainties in the boundary conditions and of the
uncertainties and sparse coverage in current proxy reconstructions.</p>
<p>The CMIP6–Paleoclimate Modeling Intercomparison
Project (PMIP4) <i>lig127k</i> simulations, in combination with the proxy record, improve
our confidence in future projections of monsoons, surface temperature, and
Arctic sea ice, thus providing a key target for model evaluation and
optimization.</p> |
url |
https://cp.copernicus.org/articles/17/63/2021/cp-17-63-2021.pdf |
work_keys_str_mv |
AT blottobliesner largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT ecbrady largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT azhao largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT cmbrierley largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT yaxford largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT ecapron largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT agovin largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT jshoffman largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT jshoffman largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT eisaacs largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT mkageyama largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT pscussolini largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT pctzedakis largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT cjrwilliams largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT ewolff largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT aabeouchi largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT pbraconnot largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT sramosbuarque largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT jcao largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT adevernal largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT mvguarino largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT cguo largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT anlegrande largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT glohmann largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT kjmeissner largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT lmenviel largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT pamorozova largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT khnisancioglu largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT khnisancioglu largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT roishi largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT dsalasymelia largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT xshi largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT msicard largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT lsime largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT cstepanek largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT rtomas largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT evolodin largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT nkhyeung largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT qzhang largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT zzhang largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT zzhang largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 AT wzheng largescalefeaturesoflastinterglacialclimateresultsfromevaluatingtheilig127kisimulationsforthecoupledmodelintercomparisonprojectcmip6paleoclimatemodelingintercomparisonprojectpmip4 |
_version_ |
1724341370701742080 |
spelling |
doaj-d68ed8dbbf6f4cb6892ec9259adc18da2021-01-11T09:16:14ZengCopernicus PublicationsClimate of the Past1814-93241814-93322021-01-0117639410.5194/cp-17-63-2021Large-scale features of Last Interglacial climate: results from evaluating the <i>lig127k</i> simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4)B. L. Otto-Bliesner0E. C. Brady1A. Zhao2C. M. Brierley3Y. Axford4E. Capron5A. Govin6J. S. Hoffman7J. S. Hoffman8E. Isaacs9M. Kageyama10P. Scussolini11P. C. Tzedakis12C. J. R. Williams13E. Wolff14A. Abe-Ouchi15P. Braconnot16S. Ramos Buarque17J. Cao18A. de Vernal19M. V. Guarino20C. Guo21A. N. LeGrande22G. Lohmann23K. J. Meissner24L. Menviel25P. A. Morozova26K. H. Nisancioglu27K. H. Nisancioglu28R. O'ishi29D. Salas y Mélia30X. Shi31M. Sicard32L. Sime33C. Stepanek34R. Tomas35E. Volodin36N. K. H. Yeung37Q. Zhang38Z. Zhang39Z. Zhang40W. Zheng41Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, 80305, USAClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, 80305, USAEnvironmental Change Research Centre, Department of Geography, University College London, London, WC1E 6BT, UKEnvironmental Change Research Centre, Department of Geography, University College London, London, WC1E 6BT, UKDepartment of Earth & Planetary Sciences, Northwestern University, Evanston, Illinois, USAPhysics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen, 2200, DenmarkLSCE-IPSL, Laboratoire des Sciences du Climat et de l'Environnement (CEA-CNRS-UVSQ), University Paris-Saclay, Gif sur Yvette, 91190, FranceScience Museum of Virginia, Richmond, Virginia 23220, USACenter for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia 23220, USAEnvironmental Change Research Centre, Department of Geography, University College London, London, WC1E 6BT, UKLSCE-IPSL, Laboratoire des Sciences du Climat et de l'Environnement (CEA-CNRS-UVSQ), University Paris-Saclay, Gif sur Yvette, 91190, FranceInstitute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, the NetherlandsEnvironmental Change Research Centre, Department of Geography, University College London, London, WC1E 6BT, UKSchool of Geographical Sciences, University of Bristol, Bristol, UKDepartment of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UKAtmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, JapanLSCE-IPSL, Laboratoire des Sciences du Climat et de l'Environnement (CEA-CNRS-UVSQ), University Paris-Saclay, Gif sur Yvette, 91190, FranceCNRM (Centre National de Recherches Météorologiques), Université de Toulouse, Météo-France, CNRS, 31057 Toulouse, FranceEarth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, 210044, ChinaGeotop & Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, Québec, H3C 3P8 CanadaBritish Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UKNORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, 5007 Bergen, NorwayNASA Goddard Institute for Space Studies and Center for Climate Systems Research, Columbia University, New York City, USAAlfred Wegener Institute – Helmholtz Centre for Polar and Marine Research, Bussestr. 24, 27570 Bremerhaven, GermanyClimate Change Research Centre, ARC Centre of Excellence for Climate Extremes, The University of New South Wales, Sydney, NSW 2052, AustraliaClimate Change Research Centre, ARC Centre of Excellence for Climate Extremes, The University of New South Wales, Sydney, NSW 2052, AustraliaInstitute of Geography, Russian Academy of Sciences, Staromonetny L. 29, Moscow, 119017, RussiaDepartment of Earth Science, University of Bergen, Bjerknes Centre for Climate Research, Allégaten 41, 5007 Bergen, NorwayCentre for Earth Evolution and Dynamics, University of Oslo, Oslo, NorwayAtmosphere and Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, JapanCNRM (Centre National de Recherches Météorologiques), Université de Toulouse, Météo-France, CNRS, 31057 Toulouse, FranceAlfred Wegener Institute – Helmholtz Centre for Polar and Marine Research, Bussestr. 24, 27570 Bremerhaven, GermanyLSCE-IPSL, Laboratoire des Sciences du Climat et de l'Environnement (CEA-CNRS-UVSQ), University Paris-Saclay, Gif sur Yvette, 91190, FranceBritish Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UKAlfred Wegener Institute – Helmholtz Centre for Polar and Marine Research, Bussestr. 24, 27570 Bremerhaven, GermanyClimate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, 80305, USAMarchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, 119333, RussiaClimate Change Research Centre, ARC Centre of Excellence for Climate Extremes, The University of New South Wales, Sydney, NSW 2052, AustraliaDepartment of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, 10691, SwedenNORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, 5007 Bergen, NorwayDepartment of Atmospheric Science, School of Environmental studies, China University of Geoscience, Wuhan, 430074, ChinaLASG (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China<p>The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 127 000 years ago (<i>lig127k</i>), designed to address the climate responses to stronger orbital forcing than the <i>midHolocene</i> experiment, using the same state-of-the-art models as for the future and following a common experimental protocol. Here we present a first analysis of a multi-model ensemble of 17 climate models, all of which have completed the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of these models varies from 1.8 to 5.6 <span class="inline-formula"><sup>∘</sup></span>C. The seasonal character of the insolation anomalies results in strong summer warming over the Northern Hemisphere continents in the <i>lig127k</i> ensemble as compared to the CMIP6 <i>piControl</i> and much-reduced minimum sea ice in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the <i>lig127k</i> than the CMIP6 <i>midHolocene</i> simulations as expected from the larger insolation anomalies at 127 than 6 ka.</p> <p>New synthesis for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The <i>lig127k</i> model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and for precipitation over the Northern Hemisphere continents. The model–data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions.</p> <p>The CMIP6–Paleoclimate Modeling Intercomparison Project (PMIP4) <i>lig127k</i> simulations, in combination with the proxy record, improve our confidence in future projections of monsoons, surface temperature, and Arctic sea ice, thus providing a key target for model evaluation and optimization.</p>https://cp.copernicus.org/articles/17/63/2021/cp-17-63-2021.pdf |