Atmospheric ammonia and particulate inorganic nitrogen over the United States

We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Chem model to investig...

Full description

Bibliographic Details
Main Authors: C. L. Heald, J. L. Collett Jr., T. Lee, K. B. Benedict, F. M. Schwandner, Y. Li, L. Clarisse, D. R. Hurtmans, M. Van Damme, C. Clerbaux, P.-F. Coheur, S. Philip, R. V. Martin, H. O. T. Pye
Format: Article
Language:English
Published: Copernicus Publications 2012-11-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/12/10295/2012/acp-12-10295-2012.pdf
id doaj-d6c276e78be2452c9bc40a5e5c7b844c
record_format Article
spelling doaj-d6c276e78be2452c9bc40a5e5c7b844c2020-11-24T23:41:47ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242012-11-011221102951031210.5194/acp-12-10295-2012Atmospheric ammonia and particulate inorganic nitrogen over the United StatesC. L. HealdJ. L. Collett Jr.T. LeeK. B. BenedictF. M. SchwandnerY. LiL. ClarisseD. R. HurtmansM. Van DammeC. ClerbauxP.-F. CoheurS. PhilipR. V. MartinH. O. T. PyeWe use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Chem model to investigate inorganic aerosol loading and atmospheric ammonia concentrations over the United States. IASI observations suggest that current ammonia emissions are underestimated in California and in the springtime in the Midwest. In California this underestimate likely drives the underestimate in nitrate formation in the GEOS-Chem model. However in the remaining continental United States we find that the nitrate simulation is biased high (normalized mean bias > = 1.0) year-round, except in Spring (due to the underestimate in ammonia in this season). None of the uncertainties in precursor emissions, the uptake efficiency of N<sub>2</sub>O<sub>5</sub> on aerosols, OH concentrations, the reaction rate for the formation of nitric acid, or the dry deposition velocity of nitric acid are able to explain this bias. We find that reducing nitric acid concentrations to 75% of their simulated values corrects the bias in nitrate (as well as ammonium) in the US. However the mechanism for this potential reduction is unclear and may be a combination of errors in chemistry, deposition and sub-grid near-surface gradients. This "updated" simulation reproduces PM and ammonia loading and captures the strong seasonal and spatial gradients in gas-particle partitioning across the United States. We estimate that nitrogen makes up 15−35% of inorganic fine PM mass over the US, and that this fraction is likely to increase in the coming decade, both with decreases in sulfur emissions and increases in ammonia emissions.http://www.atmos-chem-phys.net/12/10295/2012/acp-12-10295-2012.pdf
collection DOAJ
language English
format Article
sources DOAJ
author C. L. Heald
J. L. Collett Jr.
T. Lee
K. B. Benedict
F. M. Schwandner
Y. Li
L. Clarisse
D. R. Hurtmans
M. Van Damme
C. Clerbaux
P.-F. Coheur
S. Philip
R. V. Martin
H. O. T. Pye
spellingShingle C. L. Heald
J. L. Collett Jr.
T. Lee
K. B. Benedict
F. M. Schwandner
Y. Li
L. Clarisse
D. R. Hurtmans
M. Van Damme
C. Clerbaux
P.-F. Coheur
S. Philip
R. V. Martin
H. O. T. Pye
Atmospheric ammonia and particulate inorganic nitrogen over the United States
Atmospheric Chemistry and Physics
author_facet C. L. Heald
J. L. Collett Jr.
T. Lee
K. B. Benedict
F. M. Schwandner
Y. Li
L. Clarisse
D. R. Hurtmans
M. Van Damme
C. Clerbaux
P.-F. Coheur
S. Philip
R. V. Martin
H. O. T. Pye
author_sort C. L. Heald
title Atmospheric ammonia and particulate inorganic nitrogen over the United States
title_short Atmospheric ammonia and particulate inorganic nitrogen over the United States
title_full Atmospheric ammonia and particulate inorganic nitrogen over the United States
title_fullStr Atmospheric ammonia and particulate inorganic nitrogen over the United States
title_full_unstemmed Atmospheric ammonia and particulate inorganic nitrogen over the United States
title_sort atmospheric ammonia and particulate inorganic nitrogen over the united states
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2012-11-01
description We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Chem model to investigate inorganic aerosol loading and atmospheric ammonia concentrations over the United States. IASI observations suggest that current ammonia emissions are underestimated in California and in the springtime in the Midwest. In California this underestimate likely drives the underestimate in nitrate formation in the GEOS-Chem model. However in the remaining continental United States we find that the nitrate simulation is biased high (normalized mean bias > = 1.0) year-round, except in Spring (due to the underestimate in ammonia in this season). None of the uncertainties in precursor emissions, the uptake efficiency of N<sub>2</sub>O<sub>5</sub> on aerosols, OH concentrations, the reaction rate for the formation of nitric acid, or the dry deposition velocity of nitric acid are able to explain this bias. We find that reducing nitric acid concentrations to 75% of their simulated values corrects the bias in nitrate (as well as ammonium) in the US. However the mechanism for this potential reduction is unclear and may be a combination of errors in chemistry, deposition and sub-grid near-surface gradients. This "updated" simulation reproduces PM and ammonia loading and captures the strong seasonal and spatial gradients in gas-particle partitioning across the United States. We estimate that nitrogen makes up 15−35% of inorganic fine PM mass over the US, and that this fraction is likely to increase in the coming decade, both with decreases in sulfur emissions and increases in ammonia emissions.
url http://www.atmos-chem-phys.net/12/10295/2012/acp-12-10295-2012.pdf
work_keys_str_mv AT clheald atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT jlcollettjr atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT tlee atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT kbbenedict atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT fmschwandner atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT yli atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT lclarisse atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT drhurtmans atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT mvandamme atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT cclerbaux atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT pfcoheur atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT sphilip atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT rvmartin atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
AT hotpye atmosphericammoniaandparticulateinorganicnitrogenovertheunitedstates
_version_ 1725505326395949056