Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation

It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1–2 orders of magnitude. The biogenic HOMs were produced from ozonoly...

Full description

Bibliographic Details
Main Authors: C. Frege, I. K. Ortega, M. P. Rissanen, A. P. Praplan, G. Steiner, M. Heinritzi, L. Ahonen, A. Amorim, A.-K. Bernhammer, F. Bianchi, S. Brilke, M. Breitenlechner, L. Dada, A. Dias, J. Duplissy, S. Ehrhart, I. El-Haddad, L. Fischer, C. Fuchs, O. Garmash, M. Gonin, A. Hansel, C. R. Hoyle, T. Jokinen, H. Junninen, J. Kirkby, A. Kürten, K. Lehtipalo, M. Leiminger, R. L. Mauldin, U. Molteni, L. Nichman, T. Petäjä, N. Sarnela, S. Schobesberger, M. Simon, M. Sipilä, D. Stolzenburg, A. Tomé, A. L. Vogel, A. C. Wagner, R. Wagner, M. Xiao, C. Yan, P. Ye, J. Curtius, N. M. Donahue, R. C. Flagan, M. Kulmala, D. R. Worsnop, P. M. Winkler, J. Dommen, U. Baltensperger
Format: Article
Language:English
Published: Copernicus Publications 2018-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/65/2018/acp-18-65-2018.pdf
id doaj-d748ca897f3e41cdb5e17b9c28f207cd
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. Frege
I. K. Ortega
M. P. Rissanen
A. P. Praplan
G. Steiner
G. Steiner
G. Steiner
M. Heinritzi
L. Ahonen
A. Amorim
A.-K. Bernhammer
A.-K. Bernhammer
F. Bianchi
F. Bianchi
S. Brilke
S. Brilke
S. Brilke
M. Breitenlechner
M. Breitenlechner
L. Dada
A. Dias
J. Duplissy
J. Duplissy
S. Ehrhart
S. Ehrhart
I. El-Haddad
L. Fischer
C. Fuchs
O. Garmash
M. Gonin
A. Hansel
A. Hansel
C. R. Hoyle
T. Jokinen
H. Junninen
H. Junninen
J. Kirkby
J. Kirkby
A. Kürten
K. Lehtipalo
K. Lehtipalo
M. Leiminger
M. Leiminger
R. L. Mauldin
R. L. Mauldin
U. Molteni
L. Nichman
T. Petäjä
N. Sarnela
S. Schobesberger
S. Schobesberger
M. Simon
M. Sipilä
D. Stolzenburg
A. Tomé
A. L. Vogel
A. L. Vogel
A. C. Wagner
R. Wagner
M. Xiao
C. Yan
P. Ye
P. Ye
J. Curtius
N. M. Donahue
R. C. Flagan
M. Kulmala
D. R. Worsnop
D. R. Worsnop
D. R. Worsnop
P. M. Winkler
J. Dommen
U. Baltensperger
spellingShingle C. Frege
I. K. Ortega
M. P. Rissanen
A. P. Praplan
G. Steiner
G. Steiner
G. Steiner
M. Heinritzi
L. Ahonen
A. Amorim
A.-K. Bernhammer
A.-K. Bernhammer
F. Bianchi
F. Bianchi
S. Brilke
S. Brilke
S. Brilke
M. Breitenlechner
M. Breitenlechner
L. Dada
A. Dias
J. Duplissy
J. Duplissy
S. Ehrhart
S. Ehrhart
I. El-Haddad
L. Fischer
C. Fuchs
O. Garmash
M. Gonin
A. Hansel
A. Hansel
C. R. Hoyle
T. Jokinen
H. Junninen
H. Junninen
J. Kirkby
J. Kirkby
A. Kürten
K. Lehtipalo
K. Lehtipalo
M. Leiminger
M. Leiminger
R. L. Mauldin
R. L. Mauldin
U. Molteni
L. Nichman
T. Petäjä
N. Sarnela
S. Schobesberger
S. Schobesberger
M. Simon
M. Sipilä
D. Stolzenburg
A. Tomé
A. L. Vogel
A. L. Vogel
A. C. Wagner
R. Wagner
M. Xiao
C. Yan
P. Ye
P. Ye
J. Curtius
N. M. Donahue
R. C. Flagan
M. Kulmala
D. R. Worsnop
D. R. Worsnop
D. R. Worsnop
P. M. Winkler
J. Dommen
U. Baltensperger
Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
Atmospheric Chemistry and Physics
author_facet C. Frege
I. K. Ortega
M. P. Rissanen
A. P. Praplan
G. Steiner
G. Steiner
G. Steiner
M. Heinritzi
L. Ahonen
A. Amorim
A.-K. Bernhammer
A.-K. Bernhammer
F. Bianchi
F. Bianchi
S. Brilke
S. Brilke
S. Brilke
M. Breitenlechner
M. Breitenlechner
L. Dada
A. Dias
J. Duplissy
J. Duplissy
S. Ehrhart
S. Ehrhart
I. El-Haddad
L. Fischer
C. Fuchs
O. Garmash
M. Gonin
A. Hansel
A. Hansel
C. R. Hoyle
T. Jokinen
H. Junninen
H. Junninen
J. Kirkby
J. Kirkby
A. Kürten
K. Lehtipalo
K. Lehtipalo
M. Leiminger
M. Leiminger
R. L. Mauldin
R. L. Mauldin
U. Molteni
L. Nichman
T. Petäjä
N. Sarnela
S. Schobesberger
S. Schobesberger
M. Simon
M. Sipilä
D. Stolzenburg
A. Tomé
A. L. Vogel
A. L. Vogel
A. C. Wagner
R. Wagner
M. Xiao
C. Yan
P. Ye
P. Ye
J. Curtius
N. M. Donahue
R. C. Flagan
M. Kulmala
D. R. Worsnop
D. R. Worsnop
D. R. Worsnop
P. M. Winkler
J. Dommen
U. Baltensperger
author_sort C. Frege
title Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
title_short Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
title_full Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
title_fullStr Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
title_full_unstemmed Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
title_sort influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2018-01-01
description It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1&ndash;2 orders of magnitude. The biogenic HOMs were produced from ozonolysis of <i>α</i>-pinene at 5 °C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25, 5 and −25 °C). Most negative HOM clusters include a nitrate (NO<sub>3</sub><sup>−</sup>) ion, and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH<sub>4</sub><sup>+</sup>) ion, and the spectra are characterized by mass bands that differ in their molecular weight by ∼&thinsp;20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O : C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (−25 °C), the presence of C<sub>30</sub> clusters shows that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.
url https://www.atmos-chem-phys.net/18/65/2018/acp-18-65-2018.pdf
work_keys_str_mv AT cfrege influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT ikortega influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mprissanen influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT appraplan influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT gsteiner influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT gsteiner influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT gsteiner influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mheinritzi influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT lahonen influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT aamorim influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT akbernhammer influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT akbernhammer influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT fbianchi influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT fbianchi influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT sbrilke influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT sbrilke influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT sbrilke influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mbreitenlechner influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mbreitenlechner influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT ldada influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT adias influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT jduplissy influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT jduplissy influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT sehrhart influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT sehrhart influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT ielhaddad influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT lfischer influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT cfuchs influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT ogarmash influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mgonin influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT ahansel influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT ahansel influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT crhoyle influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT tjokinen influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT hjunninen influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT hjunninen influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT jkirkby influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT jkirkby influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT akurten influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT klehtipalo influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT klehtipalo influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mleiminger influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mleiminger influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT rlmauldin influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT rlmauldin influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT umolteni influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT lnichman influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT tpetaja influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT nsarnela influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT sschobesberger influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT sschobesberger influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT msimon influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT msipila influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT dstolzenburg influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT atome influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT alvogel influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT alvogel influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT acwagner influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT rwagner influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mxiao influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT cyan influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT pye influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT pye influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT jcurtius influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT nmdonahue influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT rcflagan influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT mkulmala influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT drworsnop influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT drworsnop influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT drworsnop influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT pmwinkler influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT jdommen influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
AT ubaltensperger influenceoftemperatureonthemolecularcompositionofionsandchargedclustersduringpurebiogenicnucleation
_version_ 1725455736826232832
spelling doaj-d748ca897f3e41cdb5e17b9c28f207cd2020-11-24T23:57:04ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-01-0118657910.5194/acp-18-65-2018Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleationC. Frege0I. K. Ortega1M. P. Rissanen2A. P. Praplan3G. Steiner4G. Steiner5G. Steiner6M. Heinritzi7L. Ahonen8A. Amorim9A.-K. Bernhammer10A.-K. Bernhammer11F. Bianchi12F. Bianchi13S. Brilke14S. Brilke15S. Brilke16M. Breitenlechner17M. Breitenlechner18L. Dada19A. Dias20J. Duplissy21J. Duplissy22S. Ehrhart23S. Ehrhart24I. El-Haddad25L. Fischer26C. Fuchs27O. Garmash28M. Gonin29A. Hansel30A. Hansel31C. R. Hoyle32T. Jokinen33H. Junninen34H. Junninen35J. Kirkby36J. Kirkby37A. Kürten38K. Lehtipalo39K. Lehtipalo40M. Leiminger41M. Leiminger42R. L. Mauldin43R. L. Mauldin44U. Molteni45L. Nichman46T. Petäjä47N. Sarnela48S. Schobesberger49S. Schobesberger50M. Simon51M. Sipilä52D. Stolzenburg53A. Tomé54A. L. Vogel55A. L. Vogel56A. C. Wagner57R. Wagner58M. Xiao59C. Yan60P. Ye61P. Ye62J. Curtius63N. M. Donahue64R. C. Flagan65M. Kulmala66D. R. Worsnop67D. R. Worsnop68D. R. Worsnop69P. M. Winkler70J. Dommen71U. Baltensperger72Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandONERA – The French Aerospace Lab, 91123 Palaiseau, FranceUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, AustriaUniversity of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, AustriaInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisbon, PortugalUniversity of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, AustriaIonicon Analytik GmbH, Eduard-Bodem Gasse 3, 6020 Innsbruck, AustriaPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, AustriaUniversity of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, AustriaInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyUniversity of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, Austrianow at: Harvard University, School of Engineering and Applied Sciences, Cambridge, MA 02138, USAUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisbon, PortugalUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandCERN, Geneva, SwitzerlandCERN, Geneva, Switzerlandnow at: Max-Planck Institute of Chemistry, Atmospheric Chemistry Department, 55128 Mainz, GermanyPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandUniversity of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, AustriaPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandTofwerk AG, 3600 Thun, SwitzerlandUniversity of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, AustriaIonicon Analytik GmbH, Eduard-Bodem Gasse 3, 6020 Innsbruck, AustriaPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Tartu, Institute of Physics, 50090 Tartu, EstoniaInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyCERN, Geneva, SwitzerlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, AustriaInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandDepartment of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, 80309-0311, USAPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandSchool of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UKUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Eastern Finland, Department of Applied Physics, 70211 Kuopio, FinlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, AustriaIDL – Universidade da Beira Interior, Av. Marquês D'Avila e Bolama, 6201-001 Covilhã, PortugalPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandCERN, Geneva, SwitzerlandInstitute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, GermanyUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USAAerodyne Research Inc., Billerica, Massachusetts, 01821, USAUniversity of Innsbruck, Institute of Ion Physics and Applied Physics, Technikerstraße 25, 6020 Innsbruck, AustriaCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USADivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USAUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Helsinki, Department of Physics, P.O. Box 64, University of Helsinki, 00014 Helsinki, FinlandUniversity of Eastern Finland, Department of Applied Physics, 70211 Kuopio, FinlandAerodyne Research Inc., Billerica, Massachusetts, 01821, USAUniversity of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, AustriaPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen, SwitzerlandIt was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1&ndash;2 orders of magnitude. The biogenic HOMs were produced from ozonolysis of <i>α</i>-pinene at 5 °C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25, 5 and −25 °C). Most negative HOM clusters include a nitrate (NO<sub>3</sub><sup>−</sup>) ion, and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH<sub>4</sub><sup>+</sup>) ion, and the spectra are characterized by mass bands that differ in their molecular weight by ∼&thinsp;20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O : C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (−25 °C), the presence of C<sub>30</sub> clusters shows that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.https://www.atmos-chem-phys.net/18/65/2018/acp-18-65-2018.pdf