A Causal Model of the Sustainable Use of Resources: A Case Study on a Woodworking Process

Controlling the life cycle of natural resources, from extraction within the design and the production of products to handling waste, is crucial to green growth and is a part of advancing a resource-efficient, circular economy where everything is fully utilised. One way of using resources more effici...

Full description

Bibliographic Details
Main Authors: Tomas Macak, Jan Hron, Jaromir Stusek
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Sustainability
Subjects:
Online Access:https://www.mdpi.com/2071-1050/12/21/9057
Description
Summary:Controlling the life cycle of natural resources, from extraction within the design and the production of products to handling waste, is crucial to green growth and is a part of advancing a resource-efficient, circular economy where everything is fully utilised. One way of using resources more efficiently for a greener economy is to design a production process that takes cost and energy savings into account. From this point of view, the goal of the article is to create a causal description of sustainable woodworking—especially using renewable and non-renewable resources—in relation to changes in the concentration levels of CO<sub>2</sub> in the atmosphere. After estimating the partial parameters, this model can be used to predict or simulate different CO<sub>2</sub> concentration levels in the atmosphere—for example, based on the ratio of renewable to non-renewable sources. After a theoretical description, the subsequent practical goal is to identify the optimal settings of wood-milling process parameters for either minimising energy consumption per workpiece and unit variable costs or for maximising the overall customer benefit. For this purpose, a complete factorial design was used, and based on this, the consumption energy (direct cost) optimisation of the production process was supplemented by a profitable production calculation. The effect of reducing variability was verified using a statistical F-test. The impact of minimising energy consumption (economically expressed as the mean profit) was then validated using a Student’s <i>t</i>-test.
ISSN:2071-1050