Chromatin-Binding Protein PHF6 Regulates Activity-Dependent Transcriptional Networks to Promote Hunger Response

Summary: Understanding the mechanisms of activity-dependent gene transcription underlying adaptive behaviors is challenging at neuronal-subtype resolution. Using cell-type specific molecular analysis in agouti-related peptide (AgRP) neurons, we reveal that the profound hunger-induced transcriptional...

Full description

Bibliographic Details
Main Authors: Linhua Gan, Jingjing Sun, Shuo Yang, Xiaocui Zhang, Wu Chen, Yiyu Sun, Xiaohua Wu, Cheng Cheng, Jing Yuan, Anan Li, Mark A. Corbett, Mathew P. Dixon, Tim Thomas, Anne K. Voss, Jozef Gécz, Guang-Zhong Wang, Azad Bonni, Qian Li, Ju Huang
Format: Article
Language:English
Published: Elsevier 2020-03-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S221112472030259X
Description
Summary:Summary: Understanding the mechanisms of activity-dependent gene transcription underlying adaptive behaviors is challenging at neuronal-subtype resolution. Using cell-type specific molecular analysis in agouti-related peptide (AgRP) neurons, we reveal that the profound hunger-induced transcriptional changes greatly depend on plant homeodomain finger protein 6 (PHF6), a transcriptional repressor enriched in AgRP neurons. Loss of PHF6 in the satiated mice results in a hunger-state-shifting transcriptional profile, while hunger fails to further induce a rapid and robust activity-dependent gene transcription in PHF6-deficient AgRP neurons. We reveal that PHF6 binds to the promoters of a subset of immediate-early genes (IEGs) and that this chromatin binding is dynamically regulated by hunger state. Depletion of PHF6 decreases hunger-driven feeding motivation and makes the mice resistant to body weight gain under repetitive fasting-refeeding conditions. Our work identifies a neuronal subtype-specific transcriptional repressor that modulates transcriptional profiles in different nutritional states and enables adaptive eating behavior. : Gan et al. show that PHF6 is a transcriptional repressor enriched in AgRP neurons and regulates immediate-early gene (IEG) expression. Depletion of PHF6 in AgRP neurons decreases hunger-driven feeding motivation and makes the mice resistant to body weight gain under repetitive fasting/refeeding conditions. Keywords: PHF6, hunger-driven feeding behavior, AgRP neuron, activity-dependent gene transcription, immediate-early genes, IEGs, Börjeson-Forssman-Lehmann syndrome, BFLS
ISSN:2211-1247