Summary: | Summary: Understanding the mechanisms of activity-dependent gene transcription underlying adaptive behaviors is challenging at neuronal-subtype resolution. Using cell-type specific molecular analysis in agouti-related peptide (AgRP) neurons, we reveal that the profound hunger-induced transcriptional changes greatly depend on plant homeodomain finger protein 6 (PHF6), a transcriptional repressor enriched in AgRP neurons. Loss of PHF6 in the satiated mice results in a hunger-state-shifting transcriptional profile, while hunger fails to further induce a rapid and robust activity-dependent gene transcription in PHF6-deficient AgRP neurons. We reveal that PHF6 binds to the promoters of a subset of immediate-early genes (IEGs) and that this chromatin binding is dynamically regulated by hunger state. Depletion of PHF6 decreases hunger-driven feeding motivation and makes the mice resistant to body weight gain under repetitive fasting-refeeding conditions. Our work identifies a neuronal subtype-specific transcriptional repressor that modulates transcriptional profiles in different nutritional states and enables adaptive eating behavior. : Gan et al. show that PHF6 is a transcriptional repressor enriched in AgRP neurons and regulates immediate-early gene (IEG) expression. Depletion of PHF6 in AgRP neurons decreases hunger-driven feeding motivation and makes the mice resistant to body weight gain under repetitive fasting/refeeding conditions. Keywords: PHF6, hunger-driven feeding behavior, AgRP neuron, activity-dependent gene transcription, immediate-early genes, IEGs, Börjeson-Forssman-Lehmann syndrome, BFLS
|