Functional Group Distribution of the Carrier Surface Influences Adhesion of Methanothermobacter thermautotrophicus
Various support carriers are used for high-density retention of methanogenic archaea in anaerobic wastewater treatment systems. Although the physicochemical properties of carrier materials and microorganisms influence the adhesion of methanogenic archaea, details about the underlying mechanism remai...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Archaea |
Online Access: | http://dx.doi.org/10.1155/2020/9432803 |
id |
doaj-d806300658b445b3a82fc994c693e26b |
---|---|
record_format |
Article |
spelling |
doaj-d806300658b445b3a82fc994c693e26b2021-07-02T08:17:48ZengHindawi LimitedArchaea1472-36461472-36542020-01-01202010.1155/2020/94328039432803Functional Group Distribution of the Carrier Surface Influences Adhesion of Methanothermobacter thermautotrophicusMasaki Umetsu0Takaaki Sunouchi1Yasuhiro Fukuda2Hideyuki Takahashi3Chika Tada4Graduate School of Agricultural Science, Tohoku University, Miyagi 989-6711, JapanGraduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, JapanGraduate School of Agricultural Science, Tohoku University, Miyagi 989-6711, JapanGraduate School of Environmental Studies, Tohoku University, Miyagi 980-8579, JapanGraduate School of Agricultural Science, Tohoku University, Miyagi 989-6711, JapanVarious support carriers are used for high-density retention of methanogenic archaea in anaerobic wastewater treatment systems. Although the physicochemical properties of carrier materials and microorganisms influence the adhesion of methanogenic archaea, details about the underlying mechanism remain poorly characterized. We applied seven types of chemical surface modifications to carbon felts to clarify the adhesion properties of Methanothermobacter thermautotrophicus, a representative thermophilic hydrogenotrophic methanogen. The relationship between carrier surface properties and methanogen adhesion was evaluated. M. thermautotrophicus adhesion was significantly increased up to 2.6 times in comparison with control on carbon felts treated with NaOH, HCl, H2SO4, or Na2HPO4. Treated carbon felts showed a lower water contact angle, but no correlation between the carrier surface contact angle and methanogen adhesion was observed. On the other hand, at the surface of the carrier that showed improved adhesion of methanogens, the ratio of -COOH : -OH was 1 : 0.65. Such a ratio was not observed with treated carriers for which methanogen adhesion was not improved. Therefore, in the adhesion of M. thermautotrophicus, the functional group abundance was important as well as physical surface properties such as the hydrophobicity. Hydrogenotrophic methanogens are involved in active methanation during the startup of anaerobic digestion. Additionally, these methanogenic archaea function as methanogenic cathode catalysts. Therefore, anaerobic digestion performance will greatly improve by controlling the adhesion of hydrogenotrophic methanogens such as M. thermautotrophicus.http://dx.doi.org/10.1155/2020/9432803 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Masaki Umetsu Takaaki Sunouchi Yasuhiro Fukuda Hideyuki Takahashi Chika Tada |
spellingShingle |
Masaki Umetsu Takaaki Sunouchi Yasuhiro Fukuda Hideyuki Takahashi Chika Tada Functional Group Distribution of the Carrier Surface Influences Adhesion of Methanothermobacter thermautotrophicus Archaea |
author_facet |
Masaki Umetsu Takaaki Sunouchi Yasuhiro Fukuda Hideyuki Takahashi Chika Tada |
author_sort |
Masaki Umetsu |
title |
Functional Group Distribution of the Carrier Surface Influences Adhesion of Methanothermobacter thermautotrophicus |
title_short |
Functional Group Distribution of the Carrier Surface Influences Adhesion of Methanothermobacter thermautotrophicus |
title_full |
Functional Group Distribution of the Carrier Surface Influences Adhesion of Methanothermobacter thermautotrophicus |
title_fullStr |
Functional Group Distribution of the Carrier Surface Influences Adhesion of Methanothermobacter thermautotrophicus |
title_full_unstemmed |
Functional Group Distribution of the Carrier Surface Influences Adhesion of Methanothermobacter thermautotrophicus |
title_sort |
functional group distribution of the carrier surface influences adhesion of methanothermobacter thermautotrophicus |
publisher |
Hindawi Limited |
series |
Archaea |
issn |
1472-3646 1472-3654 |
publishDate |
2020-01-01 |
description |
Various support carriers are used for high-density retention of methanogenic archaea in anaerobic wastewater treatment systems. Although the physicochemical properties of carrier materials and microorganisms influence the adhesion of methanogenic archaea, details about the underlying mechanism remain poorly characterized. We applied seven types of chemical surface modifications to carbon felts to clarify the adhesion properties of Methanothermobacter thermautotrophicus, a representative thermophilic hydrogenotrophic methanogen. The relationship between carrier surface properties and methanogen adhesion was evaluated. M. thermautotrophicus adhesion was significantly increased up to 2.6 times in comparison with control on carbon felts treated with NaOH, HCl, H2SO4, or Na2HPO4. Treated carbon felts showed a lower water contact angle, but no correlation between the carrier surface contact angle and methanogen adhesion was observed. On the other hand, at the surface of the carrier that showed improved adhesion of methanogens, the ratio of -COOH : -OH was 1 : 0.65. Such a ratio was not observed with treated carriers for which methanogen adhesion was not improved. Therefore, in the adhesion of M. thermautotrophicus, the functional group abundance was important as well as physical surface properties such as the hydrophobicity. Hydrogenotrophic methanogens are involved in active methanation during the startup of anaerobic digestion. Additionally, these methanogenic archaea function as methanogenic cathode catalysts. Therefore, anaerobic digestion performance will greatly improve by controlling the adhesion of hydrogenotrophic methanogens such as M. thermautotrophicus. |
url |
http://dx.doi.org/10.1155/2020/9432803 |
work_keys_str_mv |
AT masakiumetsu functionalgroupdistributionofthecarriersurfaceinfluencesadhesionofmethanothermobacterthermautotrophicus AT takaakisunouchi functionalgroupdistributionofthecarriersurfaceinfluencesadhesionofmethanothermobacterthermautotrophicus AT yasuhirofukuda functionalgroupdistributionofthecarriersurfaceinfluencesadhesionofmethanothermobacterthermautotrophicus AT hideyukitakahashi functionalgroupdistributionofthecarriersurfaceinfluencesadhesionofmethanothermobacterthermautotrophicus AT chikatada functionalgroupdistributionofthecarriersurfaceinfluencesadhesionofmethanothermobacterthermautotrophicus |
_version_ |
1721334943114592256 |