Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis

Ping Sun,1,2 Wei Huang,1,2 Mingji Jin,1,2 Qiming Wang,1,2 Bo Fan,1,2 Lin Kang,1,2 Zhonggao Gao1,2 1State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 2Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical C...

Full description

Bibliographic Details
Main Authors: Sun P, Huang W, Jin M, Wang Q, Fan B, Kang L, Gao Z
Format: Article
Language:English
Published: Dove Medical Press 2016-09-01
Series:International Journal of Nanomedicine
Subjects:
Online Access:https://www.dovepress.com/chitosan-based-nanoparticles-for-survivin-targeted-sirna-delivery-in-b-peer-reviewed-article-IJN
id doaj-d87e1dfe41d147bda4b2cf350e2d3338
record_format Article
spelling doaj-d87e1dfe41d147bda4b2cf350e2d33382020-11-24T22:35:56ZengDove Medical PressInternational Journal of Nanomedicine1178-20132016-09-01Volume 114931494529150Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasisSun PHuang WJin MWang QFan BKang LGao ZPing Sun,1,2 Wei Huang,1,2 Mingji Jin,1,2 Qiming Wang,1,2 Bo Fan,1,2 Lin Kang,1,2 Zhonggao Gao1,2 1State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 2Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis. Keywords: PEGylated chitosan, non-viral vector, siRNA delivery, breast anti-tumor therapyhttps://www.dovepress.com/chitosan-based-nanoparticles-for-survivin-targeted-sirna-delivery-in-b-peer-reviewed-article-IJNKey words: PEGylated chitosanNon-viral vectorsiRNA deliveryBreast carcinoma
collection DOAJ
language English
format Article
sources DOAJ
author Sun P
Huang W
Jin M
Wang Q
Fan B
Kang L
Gao Z
spellingShingle Sun P
Huang W
Jin M
Wang Q
Fan B
Kang L
Gao Z
Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis
International Journal of Nanomedicine
Key words: PEGylated chitosan
Non-viral vector
siRNA delivery
Breast carcinoma
author_facet Sun P
Huang W
Jin M
Wang Q
Fan B
Kang L
Gao Z
author_sort Sun P
title Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis
title_short Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis
title_full Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis
title_fullStr Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis
title_full_unstemmed Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis
title_sort chitosan-based nanoparticles for survivin targeted sirna delivery in breast tumor therapy and preventing its metastasis
publisher Dove Medical Press
series International Journal of Nanomedicine
issn 1178-2013
publishDate 2016-09-01
description Ping Sun,1,2 Wei Huang,1,2 Mingji Jin,1,2 Qiming Wang,1,2 Bo Fan,1,2 Lin Kang,1,2 Zhonggao Gao1,2 1State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 2Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China Abstract: Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis. Keywords: PEGylated chitosan, non-viral vector, siRNA delivery, breast anti-tumor therapy
topic Key words: PEGylated chitosan
Non-viral vector
siRNA delivery
Breast carcinoma
url https://www.dovepress.com/chitosan-based-nanoparticles-for-survivin-targeted-sirna-delivery-in-b-peer-reviewed-article-IJN
work_keys_str_mv AT sunp chitosanbasednanoparticlesforsurvivintargetedsirnadeliveryinbreasttumortherapyandpreventingitsmetastasis
AT huangw chitosanbasednanoparticlesforsurvivintargetedsirnadeliveryinbreasttumortherapyandpreventingitsmetastasis
AT jinm chitosanbasednanoparticlesforsurvivintargetedsirnadeliveryinbreasttumortherapyandpreventingitsmetastasis
AT wangq chitosanbasednanoparticlesforsurvivintargetedsirnadeliveryinbreasttumortherapyandpreventingitsmetastasis
AT fanb chitosanbasednanoparticlesforsurvivintargetedsirnadeliveryinbreasttumortherapyandpreventingitsmetastasis
AT kangl chitosanbasednanoparticlesforsurvivintargetedsirnadeliveryinbreasttumortherapyandpreventingitsmetastasis
AT gaoz chitosanbasednanoparticlesforsurvivintargetedsirnadeliveryinbreasttumortherapyandpreventingitsmetastasis
_version_ 1725722115834904576