A Joint Subcarrier Assignment and Power Allocation with Statistical Delay QoS Provisioning in Full-Duplex OFDMA Systems

In this paper, we explore a joint subcarrier assignment and power allocation with statistical delay QoS guarantees for full-duplex OFDMA systems. Effective capacity theory which evaluates wireless channel capacity from a novel view of link layer provides a theory basis for modeling the system capaci...

Full description

Bibliographic Details
Main Authors: Yan Shuai, Chi Xuefen, Zhao Linlin, Zhu Yuhong
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:ITM Web of Conferences
Online Access:https://doi.org/10.1051/itmconf/20181701009
Description
Summary:In this paper, we explore a joint subcarrier assignment and power allocation with statistical delay QoS guarantees for full-duplex OFDMA systems. Effective capacity theory which evaluates wireless channel capacity from a novel view of link layer provides a theory basis for modeling the system capacity under the conditions of delay QoS constrains. After modeling the aggregate effective capacity of the system, we formulate joint subcarrier assignment and power allocation problem as a mixed integer programming problem, whose target is to maximize the aggregate effective capacity. To solve this integer programming problem, we allocate initial power on each subcarrier and decompose it into two subproblems, which are subcarrier allocation problem and power allocation problem respectively. Further, we propose an alternative algorithm to achieve joint subcarrier assignment and power allocation, which can meet the “subcarrier continuity” constraint of uplink resource allocation. Simulations have shown that the performance of our proposed scheme is favorite. Additionally, we investigate the effect of the residual selfinterference, inter-node interference (INI) and statistical delay QoS exponent on the performance of systems.
ISSN:2271-2097