EXPERIMENTAL DETERMINATION OF THE ZERO POWER TRANSFER FUNCTION OF THE AKR-2

The transfer function is a basic characteristic of every nuclear reactor. It describes how a perturbation at a given place and time influences the neutron flux. In case of a known perturbation, the determination of characteristic reactor parameters is possible. The present paper shows an experimenta...

Full description

Bibliographic Details
Main Authors: Hübner Sebastian, Knospe Alexander, Viebach Marco, Lange Carsten, Hurtado Antonio
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Subjects:
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_21009.pdf
Description
Summary:The transfer function is a basic characteristic of every nuclear reactor. It describes how a perturbation at a given place and time influences the neutron flux. In case of a known perturbation, the determination of characteristic reactor parameters is possible. The present paper shows an experimental method to determine the gain of the zero-power reactor transfer function (ZPTF) of the AKR-2 reactor at TU Dresden and the comparison to the theoretical shape of the ZPTF derived from kinetic parameters simulated with MCNP. For the experiments, a high-precision linear motor axis is used to insert an oscillating perturbation acting at frequencies smaller than the lower bound of the plateau region of the ZPTF. For higher frequencies, a rotating absorber is used. This device emulates an absorber of variable strength. The reactor response is detected with a He-3 counter. The data evaluation shows good agreement between measured and corresponding theoretical values of the gain of the ZPTF.
ISSN:2100-014X