EEG-Based Neonatal Sleep-Wake Classification Using Multilayer Perceptron Neural Network
Objective: Classification of sleep-wake states using multichannel electroencephalography (EEG) data that reliably work for neonates. Methods: A deep multilayer perceptron (MLP) neural network is developed to classify sleep-wake states using multichannel bipolar EEG signals, which takes an input vect...
Main Authors: | Saadullah Farooq Abbasi, Jawad Ahmad, Ahsen Tahir, Muhammad Awais, Chen Chen, Muhammad Irfan, Hafiza Ayesha Siddiqa, Abu Bakar Waqas, Xi Long, Bin Yin, Saeed Akbarzadeh, Chunmei Lu, Laishuan Wang, Wei Chen |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9210487/ |
Similar Items
-
Multilayer perceptron for face recognition
by: Ričardas Toliušis, et al.
Published: (2017-12-01) -
Real Time Multipurpose Smart Waste Classification Model for Efficient Recycling in Smart Cities Using Multilayer Convolutional Neural Network and Perceptron
by: Ali Usman Gondal, et al.
Published: (2021-07-01) -
Crossplatform C++ library for multilayer perceptron learning
by: Дмитрий Тариельевич Ибадов, et al.
Published: (2016-05-01) -
Efficient Detection of Phishing Websites Using Multilayer Perceptron
by: Ammar Jamil Odeh, et al.
Published: (2020-07-01) -
KLASIFIKASI WEBSITE MENGGUNAKAN ALGORITMA MULTILAYER PERCEPTRON
by: Nyoman Purnama, et al.
Published: (2014-12-01)