An energy-stable pseudospectral scheme for Swift-Hohenberg equation with its Lyapunov functional
We analyze a first order in time Fourier pseudospectral scheme for Swift-Hohenberg equation. One major challenge for the higher order diffusion non-linear systems is how to ensure the unconditional energy stability and we propose an efficient scheme for the equation based on the convex splitting of...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
VINCA Institute of Nuclear Sciences
2019-01-01
|
Series: | Thermal Science |
Subjects: | |
Online Access: | http://www.doiserbia.nb.rs/img/doi/0354-9836/2019/0354-98361900249Z.pdf |
Summary: | We analyze a first order in time Fourier pseudospectral scheme for Swift-Hohenberg equation. One major challenge for the higher order diffusion non-linear systems is how to ensure the unconditional energy stability and we propose an efficient scheme for the equation based on the convex splitting of the energy. The¬oretically, the energy stability of the scheme is proved. Moreover, following the derived aliasing error estimate, the convergence analysis in the discrete l2-norm for the proposed scheme is given. |
---|---|
ISSN: | 0354-9836 |