On the asymptotic covariance of the multivariate empirical copula process

Genest and Segers (2010) gave conditions under which the empirical copula process associated with a random sample from a bivariate continuous distribution has a smaller asymptotic covariance than the standard empirical process based on a random sample from the underlying copula. An extension of this...

Full description

Bibliographic Details
Main Authors: Genest Christian, Mesfioui Mhamed, Nešlehová Johanna G.
Format: Article
Language:English
Published: De Gruyter 2019-09-01
Series:Dependence Modeling
Subjects:
Online Access:https://doi.org/10.1515/demo-2019-0015
id doaj-d97f72a9b4ce4788a39b6b3faf67ddf7
record_format Article
spelling doaj-d97f72a9b4ce4788a39b6b3faf67ddf72021-10-02T19:18:18ZengDe GruyterDependence Modeling2300-22982019-09-017127929110.1515/demo-2019-0015demo-2019-0015On the asymptotic covariance of the multivariate empirical copula processGenest Christian0Mesfioui Mhamed1Nešlehová Johanna G.2Department of Mathematics and Statistics, McGill University, 805, rue Sherbrooke ouest, Montréal (Québec) CanadaH3A 0B9Département de mathématiques et d’informatique, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières (Québec) CanadaG9A 5H7Department of Mathematics and Statistics, McGill University, 805, rue Sherbrooke ouest, Montréal (Québec) CanadaH3A 0B9Genest and Segers (2010) gave conditions under which the empirical copula process associated with a random sample from a bivariate continuous distribution has a smaller asymptotic covariance than the standard empirical process based on a random sample from the underlying copula. An extension of this result to the multivariate case is provided.https://doi.org/10.1515/demo-2019-0015empirical copula processleft-tail decreasing variable-by-variablelimiting covariancerank-based inference60e1560f1762g0562g2062h0562h20
collection DOAJ
language English
format Article
sources DOAJ
author Genest Christian
Mesfioui Mhamed
Nešlehová Johanna G.
spellingShingle Genest Christian
Mesfioui Mhamed
Nešlehová Johanna G.
On the asymptotic covariance of the multivariate empirical copula process
Dependence Modeling
empirical copula process
left-tail decreasing variable-by-variable
limiting covariance
rank-based inference
60e15
60f17
62g05
62g20
62h05
62h20
author_facet Genest Christian
Mesfioui Mhamed
Nešlehová Johanna G.
author_sort Genest Christian
title On the asymptotic covariance of the multivariate empirical copula process
title_short On the asymptotic covariance of the multivariate empirical copula process
title_full On the asymptotic covariance of the multivariate empirical copula process
title_fullStr On the asymptotic covariance of the multivariate empirical copula process
title_full_unstemmed On the asymptotic covariance of the multivariate empirical copula process
title_sort on the asymptotic covariance of the multivariate empirical copula process
publisher De Gruyter
series Dependence Modeling
issn 2300-2298
publishDate 2019-09-01
description Genest and Segers (2010) gave conditions under which the empirical copula process associated with a random sample from a bivariate continuous distribution has a smaller asymptotic covariance than the standard empirical process based on a random sample from the underlying copula. An extension of this result to the multivariate case is provided.
topic empirical copula process
left-tail decreasing variable-by-variable
limiting covariance
rank-based inference
60e15
60f17
62g05
62g20
62h05
62h20
url https://doi.org/10.1515/demo-2019-0015
work_keys_str_mv AT genestchristian ontheasymptoticcovarianceofthemultivariateempiricalcopulaprocess
AT mesfiouimhamed ontheasymptoticcovarianceofthemultivariateempiricalcopulaprocess
AT neslehovajohannag ontheasymptoticcovarianceofthemultivariateempiricalcopulaprocess
_version_ 1716847390407786496