Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance

We report on experimental investigation of thermal contact resistance, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>C</mi></msub></mrow><...

Full description

Bibliographic Details
Main Authors: Sriharsha Sudhindra, Fariborz Kargar, Alexander A. Balandin
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/7/1699
id doaj-d991faee158f464cb40fc65a83154e13
record_format Article
spelling doaj-d991faee158f464cb40fc65a83154e132021-07-23T13:57:22ZengMDPI AGNanomaterials2079-49912021-06-01111699169910.3390/nano11071699Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact ResistanceSriharsha Sudhindra0Fariborz Kargar1Alexander A. Balandin2Phonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USAPhonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USAPhonon Optimized Engineered Materials Center, Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USAWe report on experimental investigation of thermal contact resistance, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>C</mi></msub></mrow></semantics></math></inline-formula>, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>. It is found that the thermal contact resistance depends on the graphene loading, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, non-monotonically, achieving its minimum at the loading fraction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mo> </mo><mo>~</mo><mn>15</mn><mo> </mo><mrow><mi>wt</mi><mo>%</mo></mrow></mrow></semantics></math></inline-formula>. Decreasing the surface roughness by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>q</mi></msub><mo>~</mo><mn>1</mn><mrow><mo> </mo><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi></mrow></mrow></semantics></math></inline-formula> results in approximately the factor of ×2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mrow><mi>T</mi><mi>I</mi><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula>, thermal contact resistance, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>C</mi></msub></mrow></semantics></math></inline-formula>, and the total thermal resistance of the thermal interface material layer on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.https://www.mdpi.com/2079-4991/11/7/1699surface roughnessthermal contact resistancethermal conductivitygraphenesilicone oilthermal interface materials
collection DOAJ
language English
format Article
sources DOAJ
author Sriharsha Sudhindra
Fariborz Kargar
Alexander A. Balandin
spellingShingle Sriharsha Sudhindra
Fariborz Kargar
Alexander A. Balandin
Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance
Nanomaterials
surface roughness
thermal contact resistance
thermal conductivity
graphene
silicone oil
thermal interface materials
author_facet Sriharsha Sudhindra
Fariborz Kargar
Alexander A. Balandin
author_sort Sriharsha Sudhindra
title Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance
title_short Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance
title_full Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance
title_fullStr Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance
title_full_unstemmed Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance
title_sort noncured graphene thermal interface materials for high-power electronics: minimizing the thermal contact resistance
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2021-06-01
description We report on experimental investigation of thermal contact resistance, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>C</mi></msub></mrow></semantics></math></inline-formula>, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>. It is found that the thermal contact resistance depends on the graphene loading, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula>, non-monotonically, achieving its minimum at the loading fraction of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ξ</mi><mo> </mo><mo>~</mo><mn>15</mn><mo> </mo><mrow><mi>wt</mi><mo>%</mo></mrow></mrow></semantics></math></inline-formula>. Decreasing the surface roughness by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>q</mi></msub><mo>~</mo><mn>1</mn><mrow><mo> </mo><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">m</mi></mrow></mrow></semantics></math></inline-formula> results in approximately the factor of ×2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>K</mi><mrow><mi>T</mi><mi>I</mi><mi>M</mi></mrow></msub></mrow></semantics></math></inline-formula>, thermal contact resistance, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>R</mi><mi>C</mi></msub></mrow></semantics></math></inline-formula>, and the total thermal resistance of the thermal interface material layer on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ξ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>S</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.
topic surface roughness
thermal contact resistance
thermal conductivity
graphene
silicone oil
thermal interface materials
url https://www.mdpi.com/2079-4991/11/7/1699
work_keys_str_mv AT sriharshasudhindra noncuredgraphenethermalinterfacematerialsforhighpowerelectronicsminimizingthethermalcontactresistance
AT fariborzkargar noncuredgraphenethermalinterfacematerialsforhighpowerelectronicsminimizingthethermalcontactresistance
AT alexanderabalandin noncuredgraphenethermalinterfacematerialsforhighpowerelectronicsminimizingthethermalcontactresistance
_version_ 1721286825922789376