Accurate Adaptive Compensation Method for Mechanical Structure Error of the Blade Measuring System

In view of the high precision requirement for mechanical structure of aeronautical blade measuring system, this paper proposes a laser interferometer to measure the error of the spatial nodes of the measuring system based on a comprehensive analysis of domestic and foreign error compensation methods...

Full description

Bibliographic Details
Main Authors: Wei Shao, Peng Peng, Awei Zhou, Quanquan Zhu, Di Zhao
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/7527392
Description
Summary:In view of the high precision requirement for mechanical structure of aeronautical blade measuring system, this paper proposes a laser interferometer to measure the error of the spatial nodes of the measuring system based on a comprehensive analysis of domestic and foreign error compensation methods for the measuring system. The optimized algorithm backpropagation (BP) neural network (OA-BPNN) compensation method is utilized to adaptively compensate for the systematic error of the mechanical system. Compared with the traditional polynomial fitting and genetic algorithm BP neural network (GA-BPNN) algorithm, the results show that the OA-BPNN algorithm is characterized by the best adaptability, precision, and efficiency for the adaptive error compensation. The spatial errors in the XYZ directions are reduced from 10.9, 60.1, and 84.2 μm to 1.3, 4.0, and 2.4 μm, respectively. The method is of great theoretical significance and practical value.
ISSN:1024-123X
1563-5147