Wireless Photoplethysmography Sensor for Continuous Blood Pressure Biosignal Shape Acquisition

Blood pressure assessment plays a vital role in day-to-day clinical diagnosis procedures as well as personal monitoring. Thus, blood pressure monitoring devices must afford convenience and be easy to use with no side effects on the user. This paper presents a compact, economical, power-efficient, an...

Full description

Bibliographic Details
Main Authors: C. Bambang Dwi Kuncoro, Win-Jet Luo, Yean-Der Kuan
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Sensors
Online Access:http://dx.doi.org/10.1155/2020/7192015
Description
Summary:Blood pressure assessment plays a vital role in day-to-day clinical diagnosis procedures as well as personal monitoring. Thus, blood pressure monitoring devices must afford convenience and be easy to use with no side effects on the user. This paper presents a compact, economical, power-efficient, and convenient wireless plethysmography sensor for real-time blood pressure biosignal monitoring. The proposed sensor facilitates blood pressure signal shape sensing, signal conditioning, and data conversion as well as its wireless transmission to a monitoring terminal. Received data can, subsequently, be compiled and stored on a computer via a Wi-Fi module. During monitoring, users can observe blood pressure signals being processed and displayed on the graphical user interface (GUI)—developed using a virtual instrumentation (VI) application. The proposed device comprises a finger clip optical pulse sensor, analogue signal preprocessing, microcontroller, and Wi-Fi module. It consumes approximately 500 mW power when operating in the active mode and synthesized using commercial off-the-shelf (COTS) components. Experimental results reveal that the proposed device is reliable and facilitates efficient blood pressure monitoring. The proposed wireless photoplethysmographic (PPG) sensor is a preliminary (or first) version of the intended device manifestation. It provides raw blood pressure data for further classification. Additionally, the collected data concerning the blood pressure wave shape can be easily analysed for use in other biosignal observations, interpretations, and investigations. The design approach also allows the device to be built into a wearable system for further research purposes.
ISSN:1687-725X
1687-7268