Particle breakage of sand subjected to friction and collision in drum tests

This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision, by a number of drum tests on granular materials (silica sand No. 3 and ceramic balls) to investigate the characteristics of particle breakage and its effect on the characteristics of...

Full description

Bibliographic Details
Main Authors: Fangwei Yu, Chonglei Zhang, Qijun Xie, Lijun Su, Tao Zhao, M. Qasim Jan
Format: Article
Language:English
Published: Elsevier 2021-04-01
Series:Journal of Rock Mechanics and Geotechnical Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1674775520301414
Description
Summary:This paper presents a laboratory experimental study on particle breakage of sand subjected to friction and collision, by a number of drum tests on granular materials (silica sand No. 3 and ceramic balls) to investigate the characteristics of particle breakage and its effect on the characteristics of grain size distribution of sand. Particle breakage increased in up convexity with increasing duration of drum tests, but increased linearly with increasing number of balls. Particle breakage showed an increase, followed by a decrease while increasing the amount of sand. There may be existence of a characteristic amount of sand causing a maximum particle breakage. Friction tests caused much less particle breakage than collision tests did. Friction and collision resulted in different mechanisms of particle breakage, mainly by abrasion for friction and by splitting for collision. The fines content increased with increasing relative breakage. Particle breakage in the friction tests (abrasion) resulted in a sharper increase but with a smaller total amount of fines content in comparison with that in the collision tests (splitting). For the collision tests, the fines content showed a decrease followed by an increase as the amount of sand increased, whereas it increased in up convexity with increasing number of balls. The characteristic grain sizes D10 and D30 decreased in down convexity with increasing relative breakage, which could be described by a natural exponential function. However, the characteristic grain sizes D50 and D60 decreased linearly while increasing the relative breakage. In addition, the coefficients of uniformity and curvature of sand showed an increase followed by a decrease while increasing the relative breakage.
ISSN:1674-7755