Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules
Linear molecules usually represent a special case in rotational-vibrational calculations due to a singularity of the kinetic energy operator that arises from the rotation about the <i>a</i> (the principal axis of least moment of inertia, becoming the molecular axis at the linear equilibr...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/4/548 |
id |
doaj-db0a61bc17854005bdaa760dbafa5111 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Thomas M. Mellor Sergei N. Yurchenko Per Jensen |
spellingShingle |
Thomas M. Mellor Sergei N. Yurchenko Per Jensen Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules Symmetry ro-vibrational point groups molecular symmetry groups CO<sub>2</sub> |
author_facet |
Thomas M. Mellor Sergei N. Yurchenko Per Jensen |
author_sort |
Thomas M. Mellor |
title |
Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules |
title_short |
Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules |
title_full |
Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules |
title_fullStr |
Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules |
title_full_unstemmed |
Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules |
title_sort |
artificial symmetries for calculating vibrational energies of linear molecules |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-03-01 |
description |
Linear molecules usually represent a special case in rotational-vibrational calculations due to a singularity of the kinetic energy operator that arises from the rotation about the <i>a</i> (the principal axis of least moment of inertia, becoming the molecular axis at the linear equilibrium geometry) being undefined. Assuming the standard ro-vibrational basis functions, in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>N</mi><mo>−</mo><mn>6</mn></mrow></semantics></math></inline-formula> approach, of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∣</mo><msub><mi>ν</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ν</mi><mn>2</mn></msub><mo>,</mo><msubsup><mi>ν</mi><mn>3</mn><msub><mi>ℓ</mi><mn>3</mn></msub></msubsup><mo>;</mo><mi>J</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi><mo>⟩</mo></mrow></semantics></math></inline-formula>, tackling the unique difficulties of linear molecules involves constraining the vibrational and rotational functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><msub><mi>ℓ</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>, which are the projections, in units of <i>ℏ</i>, of the corresponding angular momenta onto the molecular axis. These basis functions are assigned to irreducible representations (irreps) of the <i><b>C</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2</mn><mi mathvariant="normal">v</mi></mrow></msub></semantics></math></inline-formula>(M) molecular symmetry group. This, in turn, necessitates purpose-built codes that specifically deal with linear molecules. In the present work, we describe an alternative scheme and introduce an (artificial) group that ensures that the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ℓ</mi><mn>3</mn></msub><mo>=</mo><mi>k</mi></mrow></semantics></math></inline-formula> is automatically applied solely through symmetry group algebra. The advantage of such an approach is that the application of symmetry group algebra in ro-vibrational calculations is ubiquitous, and so this method can be used to enable ro-vibrational calculations of linear molecules in polyatomic codes with fairly minimal modifications. To this end, we construct a—formally infinite—artificial molecular symmetry group <i><b>D</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mo>∞</mo><mi mathvariant="normal">h</mi></mrow></msub></semantics></math></inline-formula>(AEM), which consists of one-dimensional (non-degenerate) irreducible representations and use it to classify vibrational and rotational basis functions according to <i>ℓ</i> and <i>k</i>. This extension to non-rigorous, artificial symmetry groups is based on cyclic groups of prime-order. Opposite to the usual scenario, where the form of symmetry adapted basis sets is dictated by the symmetry group the molecule belongs to, here the symmetry group <i><b>D</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mo>∞</mo><mi mathvariant="normal">h</mi></mrow></msub></semantics></math></inline-formula>(AEM) is built to satisfy properties for the convenience of the basis set construction and matrix elements calculations. We believe that the idea of purpose-built artificial symmetry groups can be useful in other applications. |
topic |
ro-vibrational point groups molecular symmetry groups CO<sub>2</sub> |
url |
https://www.mdpi.com/2073-8994/13/4/548 |
work_keys_str_mv |
AT thomasmmellor artificialsymmetriesforcalculatingvibrationalenergiesoflinearmolecules AT sergeinyurchenko artificialsymmetriesforcalculatingvibrationalenergiesoflinearmolecules AT perjensen artificialsymmetriesforcalculatingvibrationalenergiesoflinearmolecules |
_version_ |
1724201645064060928 |
spelling |
doaj-db0a61bc17854005bdaa760dbafa51112021-03-27T00:04:53ZengMDPI AGSymmetry2073-89942021-03-011354854810.3390/sym13040548Artificial Symmetries for Calculating Vibrational Energies of Linear MoleculesThomas M. Mellor0Sergei N. Yurchenko1Per Jensen2Department of Physics and Astronomy, University College London, London WC1E 6BT, UKDepartment of Physics and Astronomy, University College London, London WC1E 6BT, UKPhysikalische und Theoretische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, D-42097 Wuppertal, GermanyLinear molecules usually represent a special case in rotational-vibrational calculations due to a singularity of the kinetic energy operator that arises from the rotation about the <i>a</i> (the principal axis of least moment of inertia, becoming the molecular axis at the linear equilibrium geometry) being undefined. Assuming the standard ro-vibrational basis functions, in the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3</mn><mi>N</mi><mo>−</mo><mn>6</mn></mrow></semantics></math></inline-formula> approach, of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∣</mo><msub><mi>ν</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ν</mi><mn>2</mn></msub><mo>,</mo><msubsup><mi>ν</mi><mn>3</mn><msub><mi>ℓ</mi><mn>3</mn></msub></msubsup><mo>;</mo><mi>J</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi><mo>⟩</mo></mrow></semantics></math></inline-formula>, tackling the unique difficulties of linear molecules involves constraining the vibrational and rotational functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><msub><mi>ℓ</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula>, which are the projections, in units of <i>ℏ</i>, of the corresponding angular momenta onto the molecular axis. These basis functions are assigned to irreducible representations (irreps) of the <i><b>C</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2</mn><mi mathvariant="normal">v</mi></mrow></msub></semantics></math></inline-formula>(M) molecular symmetry group. This, in turn, necessitates purpose-built codes that specifically deal with linear molecules. In the present work, we describe an alternative scheme and introduce an (artificial) group that ensures that the condition <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ℓ</mi><mn>3</mn></msub><mo>=</mo><mi>k</mi></mrow></semantics></math></inline-formula> is automatically applied solely through symmetry group algebra. The advantage of such an approach is that the application of symmetry group algebra in ro-vibrational calculations is ubiquitous, and so this method can be used to enable ro-vibrational calculations of linear molecules in polyatomic codes with fairly minimal modifications. To this end, we construct a—formally infinite—artificial molecular symmetry group <i><b>D</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mo>∞</mo><mi mathvariant="normal">h</mi></mrow></msub></semantics></math></inline-formula>(AEM), which consists of one-dimensional (non-degenerate) irreducible representations and use it to classify vibrational and rotational basis functions according to <i>ℓ</i> and <i>k</i>. This extension to non-rigorous, artificial symmetry groups is based on cyclic groups of prime-order. Opposite to the usual scenario, where the form of symmetry adapted basis sets is dictated by the symmetry group the molecule belongs to, here the symmetry group <i><b>D</b></i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mo>∞</mo><mi mathvariant="normal">h</mi></mrow></msub></semantics></math></inline-formula>(AEM) is built to satisfy properties for the convenience of the basis set construction and matrix elements calculations. We believe that the idea of purpose-built artificial symmetry groups can be useful in other applications.https://www.mdpi.com/2073-8994/13/4/548ro-vibrationalpoint groupsmolecular symmetry groupsCO<sub>2</sub> |