A Blockchain-Based Access Control Framework for Cyber-Physical-Social System Big Data

Cyber-Physical-Social System (CPSS) big data is specified as the global historical data which is usually stored in cloud, the local real-time data which is usually stored in the fog-edge server (FeS) of the mobile terminal devices or sensors, and the social data which is usually stored in the social...

Full description

Bibliographic Details
Main Authors: Liang Tan, Na Shi, Caixia Yang, Keping Yu
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
CPS
Online Access:https://ieeexplore.ieee.org/document/9075974/
Description
Summary:Cyber-Physical-Social System (CPSS) big data is specified as the global historical data which is usually stored in cloud, the local real-time data which is usually stored in the fog-edge server (FeS) of the mobile terminal devices or sensors, and the social data which is usually stored in the social data server (SdS), moreover adopts a centralized access control mechanism to offer users' access strategy which can easily cause CPSS big data to be tampered with and to be leaked. Therefore, a blockchain-based access control scheme called BacCPSS for CPSS big data is proposed. In BacCPSS, account address of the node in blockchain is used as the identity to access CPSS big data, the access control permission for CPSS big data is redefined and stored in blockchain, and processes of authorization, authorization revocation, access control and audit in BacCPSS are designed, and then a lightweight symmetric encryption algorithm is used to achieve privacy-preserving. Finally, a credible experimental model on EOS and Aliyun cloud is built. Results show that BacCPSS is feasible and effective, and can achieve secure access in CPSS while protecting privacy.
ISSN:2169-3536