Failure Assessment of Steel/CFRP Double Strap Joints

In the current study, the failure behavior of retrofitted steel structures was studied experimentally and theoretically with steel/carbon fiber reinforced polymer (CFRP) double strap joints (DSJs) under quasi-static tensile loading. A series of DSJs with different bonding lengths are also considered...

Full description

Bibliographic Details
Main Authors: Hamid Reza Majidi, Seyed Mohammad Javad Razavi, Filippo Berto
Format: Article
Language:English
Published: MDPI AG 2017-07-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/7/7/255
Description
Summary:In the current study, the failure behavior of retrofitted steel structures was studied experimentally and theoretically with steel/carbon fiber reinforced polymer (CFRP) double strap joints (DSJs) under quasi-static tensile loading. A series of DSJs with different bonding lengths are also considered and examined to experimentally assess the effective bond length. To predict the failure load values of the tested specimens, a new stress-based method, namely the point stress (PS) method is proposed. Although some theoretical predictive modelling for the strength between steel/CFRP joints under various loading conditions has been presented, in this work by using the new proposed approach, one can calculate rapidly and conveniently the failure loads of the steel/CFRP specimens. Furthermore, to assess the validity of the new proposed method, further experimental data on steel/CFRP DSJs available in the open literature are predicted using the PS method. Finally, it was found that a good agreement exists between the experimental results and the theoretical predictions based on the PS method.
ISSN:2075-4701