Summary: | Abstract Background Welfare concerns, production losses caused by Dermanyssus gallinae, the poultry red mite (PRM), and widespread mite resistance to environmentally applied acaricides continue to drive an urgent need for new and effective control measures. Fluralaner is a novel systemic acaricide developed to address that need. A series of field studies was initiated to investigate the safety and efficacy of a fluralaner solution (10 mg/ml) administered in drinking water at a dose rate of 0.5 mg/kg on two occasions with a 7-day interval, for treatment of natural PRM infestations in chickens. Methods Blinded, negative-controlled studies were completed in Europe across eight layer, two breeder, and two replacement chicken farms. At each farm, two similar flocks were housed in similar PRM-infested units (either rooms within a building, or separate buildings) varying from 550 to 100,000 birds per unit. One unit at each farm was allocated to fluralaner treatment, administered in drinking water on Days 0 and 7. One unit remained untreated. Mite traps were placed throughout each unit on Days -1, 0 or 1, 3, 6, 9, and 13 or 14, then at weekly or two-weekly intervals, retrieved after 24 h and processed for mite counts. Efficacy at each farm was assessed by mean PRM count reductions from traps in treated units compared with those from control units. Production parameters and safety were also monitored. Results Efficacy was 95.3 to 99.8% on Day 3 and 97.8 to 100% on Day 9, thereafter remaining above 90% for 56 to 238 days after treatment initiation. Post-treatment improvement in egg-laying rate was greater by 0.9 to 12.6% in the treated group at 9 of the 10 layer or breeder farms. There were no treatment-related adverse events. Conclusion Fluralaner administered at 0.5 mg/kg via drinking water twice, 7 days apart, was well tolerated and highly efficacious against the PRM in naturally infested chickens representing a range of production types and management systems. The results indicate that this novel treatment has potential to be the cornerstone of an integrated approach to reducing or eliminating the welfare and productivity costs of this increasingly threatening pest.
|