Approximately Normalized Iterative Hard Thresholding for Nonlinear Compressive Sensing

The nonlinear compressive sensing (NCS) is an extension of classical compressive sensing (CS) and the iterative hard thresholding (IHT) algorithm is a popular greedy-type method for solving CS. The normalized iterative hard thresholding (NIHT) is a modification of IHT and is more effective than IHT....

Full description

Bibliographic Details
Main Author: Xunzhi Zhu
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2016/2594752
Description
Summary:The nonlinear compressive sensing (NCS) is an extension of classical compressive sensing (CS) and the iterative hard thresholding (IHT) algorithm is a popular greedy-type method for solving CS. The normalized iterative hard thresholding (NIHT) is a modification of IHT and is more effective than IHT. In this paper, we propose an approximately normalized iterative hard thresholding (ANIHT) algorithm for NCS by using the approximate optimal stepsize combining with Armijo stepsize rule preiteration. Under the condition similar to restricted isometry property (RIP), we analyze the condition that can identify the iterative support sets in a finite number of iterations. Numerical experiments show the good performance of the new algorithm for the NCS.
ISSN:1024-123X
1563-5147