Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites

Graphene nanoplatelets (GNPs) are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhan...

Full description

Bibliographic Details
Main Authors: Ming-Yuan Shen, Tung-Yu Chang, Tsung-Han Hsieh, Yi-Luen Li, Chin-Lung Chiang, Hsiharng Yang, Ming-Chuen Yip
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2013/565401
Description
Summary:Graphene nanoplatelets (GNPs) are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.
ISSN:1687-4110
1687-4129