Lane Departure Avoidance Control for Electric Vehicle Using Torque Allocation

This paper focuses on the lane departure avoidance system for a four in-wheel motors’ drive electric vehicle, aiming at preventing lane departure under dangerous driving conditions. The control architecture for the lane departure avoidance system is hierarchical. In the upper controller, the desired...

Full description

Bibliographic Details
Main Authors: Yiwan Wu, Zhengqiang Chen, Rong Liu, Fan Li
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/1024805
Description
Summary:This paper focuses on the lane departure avoidance system for a four in-wheel motors’ drive electric vehicle, aiming at preventing lane departure under dangerous driving conditions. The control architecture for the lane departure avoidance system is hierarchical. In the upper controller, the desired yaw rate was calculated with the consideration of vehicle-lane deviation, vehicle dynamic, and the limitation of road adhesion. In the middle controller, a sliding mode controller (SMC) was designed to control the additional yaw moment. In the lower layer, the yaw moment was produced by the optimal distribution of driving/braking torque between four wheels. Lane departure avoidance was carried out by tracking desired yaw response. Simulations were performed to study the effectiveness of the control algorithm in Carsim®/Simulink® cosimulation. Simulation results show that the proposed methods can effectively confine the vehicle in lane and prevent lane departure accidents.
ISSN:1024-123X
1563-5147