Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase.
Helicobacter pylori HP0377 is a thiol oxidoreductase, a member of the CcmG family involved in cytochrome biogenesis, as previously shown by in vitro experiments. In this report, we document that HP0377 also acts in vivo in the cytochrome assembly process in Bacillus subtilis, where it complements th...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC5909903?pdf=render |
id |
doaj-dd5ea5637b1f4ab8a74da0dfc3cc10b2 |
---|---|
record_format |
Article |
spelling |
doaj-dd5ea5637b1f4ab8a74da0dfc3cc10b22020-11-25T01:24:20ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01134e019535810.1371/journal.pone.0195358Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase.Magdalena Joanna GrzeszczukAleksandra BąkAnna Marta BanaśPaweł UrbanowiczStanislaw Dunin-HorkawiczArtur GieldonCezary CzaplewskiAdam LiwoElżbieta K Jagusztyn-KrynickaHelicobacter pylori HP0377 is a thiol oxidoreductase, a member of the CcmG family involved in cytochrome biogenesis, as previously shown by in vitro experiments. In this report, we document that HP0377 also acts in vivo in the cytochrome assembly process in Bacillus subtilis, where it complements the lack of ResA. However, unlike other characterized proteins in this family, HP0377 is a dithiol reductase and isomerase. We elucidated how the amino acid composition of its active site modulates its functionality. We demonstrated that cis-proline (P156) is involved in its interaction with the redox partner (CcdA), as a P156T HP0377 variant is inactive in vivo and is present in the oxidized form in B. subtilis. Furthermore, we showed that engineering the HP0377 active motif by changing CSYC motif into CSYS or SSYC, clearly diminishes two activities (reduction and isomerization) of the protein. Whereas HP0377CSYA is inactive in reduction as well as in isomerization, HP0377CSYS retains reductive activity. Also, replacement of F95 by Q decreases its ability to regenerate scRNase and does not influence the reductive activity of HP0377CSYS towards apocytochrome c. HP0377 is also distinguished from other CcmGs as it forms a 2:1 complex with apocytochrome c. Phylogenetic analyses showed that, although HP0377 is capable of complementing ResA in Bacillus subtilis, its thioredoxin domain has a different origin, presumably common to DsbC.http://europepmc.org/articles/PMC5909903?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Magdalena Joanna Grzeszczuk Aleksandra Bąk Anna Marta Banaś Paweł Urbanowicz Stanislaw Dunin-Horkawicz Artur Gieldon Cezary Czaplewski Adam Liwo Elżbieta K Jagusztyn-Krynicka |
spellingShingle |
Magdalena Joanna Grzeszczuk Aleksandra Bąk Anna Marta Banaś Paweł Urbanowicz Stanislaw Dunin-Horkawicz Artur Gieldon Cezary Czaplewski Adam Liwo Elżbieta K Jagusztyn-Krynicka Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. PLoS ONE |
author_facet |
Magdalena Joanna Grzeszczuk Aleksandra Bąk Anna Marta Banaś Paweł Urbanowicz Stanislaw Dunin-Horkawicz Artur Gieldon Cezary Czaplewski Adam Liwo Elżbieta K Jagusztyn-Krynicka |
author_sort |
Magdalena Joanna Grzeszczuk |
title |
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. |
title_short |
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. |
title_full |
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. |
title_fullStr |
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. |
title_full_unstemmed |
Impact of selected amino acids of HP0377 (Helicobacter pylori thiol oxidoreductase) on its functioning as a CcmG (cytochrome c maturation) protein and Dsb (disulfide bond) isomerase. |
title_sort |
impact of selected amino acids of hp0377 (helicobacter pylori thiol oxidoreductase) on its functioning as a ccmg (cytochrome c maturation) protein and dsb (disulfide bond) isomerase. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
Helicobacter pylori HP0377 is a thiol oxidoreductase, a member of the CcmG family involved in cytochrome biogenesis, as previously shown by in vitro experiments. In this report, we document that HP0377 also acts in vivo in the cytochrome assembly process in Bacillus subtilis, where it complements the lack of ResA. However, unlike other characterized proteins in this family, HP0377 is a dithiol reductase and isomerase. We elucidated how the amino acid composition of its active site modulates its functionality. We demonstrated that cis-proline (P156) is involved in its interaction with the redox partner (CcdA), as a P156T HP0377 variant is inactive in vivo and is present in the oxidized form in B. subtilis. Furthermore, we showed that engineering the HP0377 active motif by changing CSYC motif into CSYS or SSYC, clearly diminishes two activities (reduction and isomerization) of the protein. Whereas HP0377CSYA is inactive in reduction as well as in isomerization, HP0377CSYS retains reductive activity. Also, replacement of F95 by Q decreases its ability to regenerate scRNase and does not influence the reductive activity of HP0377CSYS towards apocytochrome c. HP0377 is also distinguished from other CcmGs as it forms a 2:1 complex with apocytochrome c. Phylogenetic analyses showed that, although HP0377 is capable of complementing ResA in Bacillus subtilis, its thioredoxin domain has a different origin, presumably common to DsbC. |
url |
http://europepmc.org/articles/PMC5909903?pdf=render |
work_keys_str_mv |
AT magdalenajoannagrzeszczuk impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase AT aleksandrabak impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase AT annamartabanas impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase AT pawełurbanowicz impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase AT stanislawduninhorkawicz impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase AT arturgieldon impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase AT cezaryczaplewski impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase AT adamliwo impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase AT elzbietakjagusztynkrynicka impactofselectedaminoacidsofhp0377helicobacterpylorithioloxidoreductaseonitsfunctioningasaccmgcytochromecmaturationproteinanddsbdisulfidebondisomerase |
_version_ |
1725117755718369280 |