On a result of Cartwright and Field
Abstract Let Mn,r=(∑i=1nqixir)1r $M_{n,r}=(\sum_{i=1}^{n}q_{i}x_{i}^{r})^{\frac{1}{r}}$, r≠0 $r\neq 0$, and Mn,0=limr→0Mn,r $M_{n,0}= \lim_{r \rightarrow 0}M_{n,r}$ be the weighted power means of n non-negative numbers xi $x_{i}$, 1≤i≤n $1 \leq i \leq n$, with qi>0 $q_{i} > 0$ satisfying ∑i=1n...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-12-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1948-8 |
id |
doaj-de121d4c2cc94a9abb024e4fc90b573c |
---|---|
record_format |
Article |
spelling |
doaj-de121d4c2cc94a9abb024e4fc90b573c2020-11-25T02:10:07ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-12-012018111310.1186/s13660-018-1948-8On a result of Cartwright and FieldPeng Gao0Department of Mathematics, School of Mathematics and Systems Science, Beihang UniversityAbstract Let Mn,r=(∑i=1nqixir)1r $M_{n,r}=(\sum_{i=1}^{n}q_{i}x_{i}^{r})^{\frac{1}{r}}$, r≠0 $r\neq 0$, and Mn,0=limr→0Mn,r $M_{n,0}= \lim_{r \rightarrow 0}M_{n,r}$ be the weighted power means of n non-negative numbers xi $x_{i}$, 1≤i≤n $1 \leq i \leq n$, with qi>0 $q_{i} > 0$ satisfying ∑i=1nqi=1 $\sum^{n}_{i=1}q_{i}=1$. For r>s $r>s$, a result of Cartwright and Field shows that when r=1 $r=1$, s=0 $s=0$, r−s2xnσn≤Mn,r−Mn,s≤r−s2x1σn, $$\begin{aligned} \frac{r-s}{2x_{n}}\sigma _{n} \leq M_{n,r}-M_{n,s} \leq \frac{r-s}{2x _{1}} \sigma _{n}, \end{aligned}$$ where x1=min{xi} $x_{1}=\min \{ x_{i} \}$, xn=max{xi} $x_{n}=\max \{ x_{i} \}$, σn=∑i=1nqi(xi−Mn,1)2 $\sigma _{n}= \sum_{i=1}^{n}q_{i}(x_{i}-M_{n,1})^{2}$. In this paper, we determine all the pairs (r,s) $(r,s)$ such that the right-hand side inequality above holds and all the pairs (r,s) $(r,s)$, −1/2≤s≤1 $-1/2 \leq s \leq 1$ such that the left-hand side inequality above holds.http://link.springer.com/article/10.1186/s13660-018-1948-8Arithmetic-geometric meanInequalityPower means |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Peng Gao |
spellingShingle |
Peng Gao On a result of Cartwright and Field Journal of Inequalities and Applications Arithmetic-geometric mean Inequality Power means |
author_facet |
Peng Gao |
author_sort |
Peng Gao |
title |
On a result of Cartwright and Field |
title_short |
On a result of Cartwright and Field |
title_full |
On a result of Cartwright and Field |
title_fullStr |
On a result of Cartwright and Field |
title_full_unstemmed |
On a result of Cartwright and Field |
title_sort |
on a result of cartwright and field |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2018-12-01 |
description |
Abstract Let Mn,r=(∑i=1nqixir)1r $M_{n,r}=(\sum_{i=1}^{n}q_{i}x_{i}^{r})^{\frac{1}{r}}$, r≠0 $r\neq 0$, and Mn,0=limr→0Mn,r $M_{n,0}= \lim_{r \rightarrow 0}M_{n,r}$ be the weighted power means of n non-negative numbers xi $x_{i}$, 1≤i≤n $1 \leq i \leq n$, with qi>0 $q_{i} > 0$ satisfying ∑i=1nqi=1 $\sum^{n}_{i=1}q_{i}=1$. For r>s $r>s$, a result of Cartwright and Field shows that when r=1 $r=1$, s=0 $s=0$, r−s2xnσn≤Mn,r−Mn,s≤r−s2x1σn, $$\begin{aligned} \frac{r-s}{2x_{n}}\sigma _{n} \leq M_{n,r}-M_{n,s} \leq \frac{r-s}{2x _{1}} \sigma _{n}, \end{aligned}$$ where x1=min{xi} $x_{1}=\min \{ x_{i} \}$, xn=max{xi} $x_{n}=\max \{ x_{i} \}$, σn=∑i=1nqi(xi−Mn,1)2 $\sigma _{n}= \sum_{i=1}^{n}q_{i}(x_{i}-M_{n,1})^{2}$. In this paper, we determine all the pairs (r,s) $(r,s)$ such that the right-hand side inequality above holds and all the pairs (r,s) $(r,s)$, −1/2≤s≤1 $-1/2 \leq s \leq 1$ such that the left-hand side inequality above holds. |
topic |
Arithmetic-geometric mean Inequality Power means |
url |
http://link.springer.com/article/10.1186/s13660-018-1948-8 |
work_keys_str_mv |
AT penggao onaresultofcartwrightandfield |
_version_ |
1724920746154655744 |