Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity

May Bin-Jumah,1 Sadaf Jamal Gilani,2 Mohammed Asadullah Jahangir,3 Ameeduzzafar Zafar,4 Sultan Alshehri,5,6 Mohd Yasir,7 Chandra Kala,8 Mohamad Taleuzzaman,8 Syed Sarim Imam5 1Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; 2Department of Ba...

Full description

Bibliographic Details
Main Authors: Bin-Jumah M, Gilani SJ, Jahangir MA, Zafar A, Alshehri S, Yasir M, Kala C, Taleuzzaman M, Imam SS
Format: Article
Language:English
Published: Dove Medical Press 2020-10-01
Series:International Journal of Nanomedicine
Subjects:
Online Access:https://www.dovepress.com/clarithromycin-loaded-ocular-chitosan-nanoparticle-formulation-optimiz-peer-reviewed-article-IJN
id doaj-de1d1aa0447e48ca9c856c22443ee55e
record_format Article
spelling doaj-de1d1aa0447e48ca9c856c22443ee55e2020-11-25T03:39:25ZengDove Medical PressInternational Journal of Nanomedicine1178-20132020-10-01Volume 157861787558021Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial ActivityBin-Jumah MGilani SJJahangir MAZafar AAlshehri SYasir MKala CTaleuzzaman MImam SSMay Bin-Jumah,1 Sadaf Jamal Gilani,2 Mohammed Asadullah Jahangir,3 Ameeduzzafar Zafar,4 Sultan Alshehri,5,6 Mohd Yasir,7 Chandra Kala,8 Mohamad Taleuzzaman,8 Syed Sarim Imam5 1Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; 2Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; 3Department of Pharmaceutics, Nibha Institute of Pharmaceutical Sciences, Rajgir, Nalanda 803116, Bihar, India; 4Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia; 5Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 6College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia; 7Department of Pharmacy, College of Health Science, Arsi University, Asella, Ethiopia; 8Faculty of Pharmacy, Maulana Azad University, Jodhpur 342802, Rajasthan, IndiaCorrespondence: Sadaf Jamal GilaniDepartment of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi ArabiaEmail gilanisadaf@gmail.comSyed Sarim ImamDepartment of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi ArabiaEmail sarimimam@gmail.comPurpose: The topically administered drugs through conventional delivery systems have low bioavailability. Henceforth, the present study was designed to prepare and optimize clarithromycin (CTM)-loaded chitosan nanoparticles (CHNPs) to demonstrate the efficacy against microorganisms.Methods: Clarithromycin-loaded chitosan nanoparticles (CTM-CHNPs) were prepared by ionotropic gelation method. The formulation was optimized by box-Behnken design using the formulation variables like CH (A), STPP concentration (B), and stirring speed (C). Their effects were evaluated on the independent variables like particle size (Y1) and entrapment efficiency (Y2). Further, CTM-CHNPs were evaluated for physicochemical parameters, in-vitro drug release, ex-vivo permeation, bioadhesive study, corneal hydration, histopathology, HET-CAM, and antibacterial study.Results: The optimized formulation (CTM-CHNPopt) showed the low particle size (152± 5 nm), which is desirable for ocular delivery. It also showed high encapsulation (70.05%), zeta potential (+35.2 mV), and was found in a spherical shape. The drug release study revealed a sustained drug release profile (82.98± 3.5% in 12 hours) with Korsmeyer peppas kinetic (R2=0.996) release model. It showed a 2.7-fold higher corneal permeation than CTM-solution. CHNPs did not exhibit any sign of damage to excised goat cornea, which is confirmed by hydration, histopathology, and HET-CAM test. It exhibited significant (P< 0.05) higher antibacterial susceptibility than CTM-solution.Conclusion: The finding of the study concluded that CTM-CHNPs can be used for effective management of bacterial conjunctivitis by increasing the precorneal residence time.Keywords: clarithromycin, chitosan, optimization, nanoparticles, HET-CAM, antimicrobial assessmenthttps://www.dovepress.com/clarithromycin-loaded-ocular-chitosan-nanoparticle-formulation-optimiz-peer-reviewed-article-IJNclarithromycinchitosanoptimizationnanoparticleshet-camantimicrobial assessment
collection DOAJ
language English
format Article
sources DOAJ
author Bin-Jumah M
Gilani SJ
Jahangir MA
Zafar A
Alshehri S
Yasir M
Kala C
Taleuzzaman M
Imam SS
spellingShingle Bin-Jumah M
Gilani SJ
Jahangir MA
Zafar A
Alshehri S
Yasir M
Kala C
Taleuzzaman M
Imam SS
Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity
International Journal of Nanomedicine
clarithromycin
chitosan
optimization
nanoparticles
het-cam
antimicrobial assessment
author_facet Bin-Jumah M
Gilani SJ
Jahangir MA
Zafar A
Alshehri S
Yasir M
Kala C
Taleuzzaman M
Imam SS
author_sort Bin-Jumah M
title Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity
title_short Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity
title_full Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity
title_fullStr Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity
title_full_unstemmed Clarithromycin-Loaded Ocular Chitosan Nanoparticle: Formulation, Optimization, Characterization, Ocular Irritation, and Antimicrobial Activity
title_sort clarithromycin-loaded ocular chitosan nanoparticle: formulation, optimization, characterization, ocular irritation, and antimicrobial activity
publisher Dove Medical Press
series International Journal of Nanomedicine
issn 1178-2013
publishDate 2020-10-01
description May Bin-Jumah,1 Sadaf Jamal Gilani,2 Mohammed Asadullah Jahangir,3 Ameeduzzafar Zafar,4 Sultan Alshehri,5,6 Mohd Yasir,7 Chandra Kala,8 Mohamad Taleuzzaman,8 Syed Sarim Imam5 1Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; 2Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; 3Department of Pharmaceutics, Nibha Institute of Pharmaceutical Sciences, Rajgir, Nalanda 803116, Bihar, India; 4Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia; 5Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; 6College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia; 7Department of Pharmacy, College of Health Science, Arsi University, Asella, Ethiopia; 8Faculty of Pharmacy, Maulana Azad University, Jodhpur 342802, Rajasthan, IndiaCorrespondence: Sadaf Jamal GilaniDepartment of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi ArabiaEmail gilanisadaf@gmail.comSyed Sarim ImamDepartment of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi ArabiaEmail sarimimam@gmail.comPurpose: The topically administered drugs through conventional delivery systems have low bioavailability. Henceforth, the present study was designed to prepare and optimize clarithromycin (CTM)-loaded chitosan nanoparticles (CHNPs) to demonstrate the efficacy against microorganisms.Methods: Clarithromycin-loaded chitosan nanoparticles (CTM-CHNPs) were prepared by ionotropic gelation method. The formulation was optimized by box-Behnken design using the formulation variables like CH (A), STPP concentration (B), and stirring speed (C). Their effects were evaluated on the independent variables like particle size (Y1) and entrapment efficiency (Y2). Further, CTM-CHNPs were evaluated for physicochemical parameters, in-vitro drug release, ex-vivo permeation, bioadhesive study, corneal hydration, histopathology, HET-CAM, and antibacterial study.Results: The optimized formulation (CTM-CHNPopt) showed the low particle size (152± 5 nm), which is desirable for ocular delivery. It also showed high encapsulation (70.05%), zeta potential (+35.2 mV), and was found in a spherical shape. The drug release study revealed a sustained drug release profile (82.98± 3.5% in 12 hours) with Korsmeyer peppas kinetic (R2=0.996) release model. It showed a 2.7-fold higher corneal permeation than CTM-solution. CHNPs did not exhibit any sign of damage to excised goat cornea, which is confirmed by hydration, histopathology, and HET-CAM test. It exhibited significant (P< 0.05) higher antibacterial susceptibility than CTM-solution.Conclusion: The finding of the study concluded that CTM-CHNPs can be used for effective management of bacterial conjunctivitis by increasing the precorneal residence time.Keywords: clarithromycin, chitosan, optimization, nanoparticles, HET-CAM, antimicrobial assessment
topic clarithromycin
chitosan
optimization
nanoparticles
het-cam
antimicrobial assessment
url https://www.dovepress.com/clarithromycin-loaded-ocular-chitosan-nanoparticle-formulation-optimiz-peer-reviewed-article-IJN
work_keys_str_mv AT binjumahm clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
AT gilanisj clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
AT jahangirma clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
AT zafara clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
AT alshehris clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
AT yasirm clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
AT kalac clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
AT taleuzzamanm clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
AT imamss clarithromycinloadedocularchitosannanoparticleformulationoptimizationcharacterizationocularirritationandantimicrobialactivity
_version_ 1724538954182557696