Usefulness of porphyry and amphibolites as a component of concrete for airfield pavements

Coarse aggregate used as part of cement concrete is of primary significance for the obtained parameters of hardened concrete. In case of concretes intended for airfield pavements, the application of granite grit is recommended. Alternative to this type of aggregate in the form of porphyry and amphib...

Full description

Bibliographic Details
Main Authors: Linek Małgorzata, Nita Piotr, Wolka Paweł, Żebrowski Wojciech
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201816307002
Description
Summary:Coarse aggregate used as part of cement concrete is of primary significance for the obtained parameters of hardened concrete. In case of concretes intended for airfield pavements, the application of granite grit is recommended. Alternative to this type of aggregate in the form of porphyry and amphibolites aggregate was suggested. In order to assess the suitability of different aggregate types for concrete mixes, their bulk density, absorbability, polishing resistance, abrasion and crushing resistance were determined. Also, the internal structure of the suggested aggregates and its influence on changes of hardened concrete composite structure were subject to the assessment. The influence of aggregate type on the structure of cement matrix and contact areas between the matrix and aggregate grains were specified. The observed changes, in case of the internal structure of concretes based on porphyry and amphibolites aggregates, with reference to granite aggregate, resulted in changes of mechanical and physical parameters. Analyses included the determination of bulk density, absorbability, compression, bending and splitting resistance. According to the obtained laboratory test results, the significant influence of the aggregate type applied to the mix on parameters of hardened concrete, with regard to the application thereof to the airfield pavements was proved.
ISSN:2261-236X