Electro-Thermal Simulation of Vertical VO<sub>2</sub> Thermal-Electronic Circuit Elements

Advancement of classical silicon-based circuit technology is approaching maturity and saturation. The worldwide research is now focusing wide range of potential technologies for the “More than Moore” era. One of these technologies is thermal-electronic logic circuits based on the semiconductor-to-me...

Full description

Bibliographic Details
Main Authors: Mahmoud Darwish, Péter Neumann, János Mizsei, László Pohl
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/13/3447
id doaj-df2ce526c158457c89e2a62cf10ae00c
record_format Article
spelling doaj-df2ce526c158457c89e2a62cf10ae00c2020-11-25T03:24:22ZengMDPI AGEnergies1996-10732020-07-01133447344710.3390/en13133447Electro-Thermal Simulation of Vertical VO<sub>2</sub> Thermal-Electronic Circuit ElementsMahmoud Darwish0Péter Neumann1János Mizsei2László Pohl3Department of Electron Devices, Budapest University of Technology and Economics, 1117 Budapest, HungaryDepartment of Electron Devices, Budapest University of Technology and Economics, 1117 Budapest, HungaryDepartment of Electron Devices, Budapest University of Technology and Economics, 1117 Budapest, HungaryDepartment of Electron Devices, Budapest University of Technology and Economics, 1117 Budapest, HungaryAdvancement of classical silicon-based circuit technology is approaching maturity and saturation. The worldwide research is now focusing wide range of potential technologies for the “More than Moore” era. One of these technologies is thermal-electronic logic circuits based on the semiconductor-to-metal phase transition of vanadium dioxide, a possible future logic circuits to replace the conventional circuits. In thermal-electronic circuits, information flows in a combination of thermal and electronic signals. Design of these circuits will be possible once appropriate device models become available. Characteristics of vanadium dioxide are under research by preparing structures in laboratory and their validation by simulation models. Modeling and simulation of these devices is challenging due to several nonlinearities, discussed in this article. Introduction of custom finite volumes method simulator has however improved handling of special properties of vanadium dioxide. This paper presents modeling and electro-thermal simulation of vertically structured devices of different dimensions, 10<inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">n</mi> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> </inline-formula> to 300<inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">n</mi> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> </inline-formula> layer thicknesses and 200<inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">n</mi> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> </inline-formula> to 30<inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> </inline-formula> radii. Results of this research will facilitate determination of sample sizes in the next phase of device modeling.https://www.mdpi.com/1996-1073/13/13/3447beyond CMOSVO<sub>2</sub>thermal-electronic circuitselectro-thermal simulationvertical structure
collection DOAJ
language English
format Article
sources DOAJ
author Mahmoud Darwish
Péter Neumann
János Mizsei
László Pohl
spellingShingle Mahmoud Darwish
Péter Neumann
János Mizsei
László Pohl
Electro-Thermal Simulation of Vertical VO<sub>2</sub> Thermal-Electronic Circuit Elements
Energies
beyond CMOS
VO<sub>2</sub>
thermal-electronic circuits
electro-thermal simulation
vertical structure
author_facet Mahmoud Darwish
Péter Neumann
János Mizsei
László Pohl
author_sort Mahmoud Darwish
title Electro-Thermal Simulation of Vertical VO<sub>2</sub> Thermal-Electronic Circuit Elements
title_short Electro-Thermal Simulation of Vertical VO<sub>2</sub> Thermal-Electronic Circuit Elements
title_full Electro-Thermal Simulation of Vertical VO<sub>2</sub> Thermal-Electronic Circuit Elements
title_fullStr Electro-Thermal Simulation of Vertical VO<sub>2</sub> Thermal-Electronic Circuit Elements
title_full_unstemmed Electro-Thermal Simulation of Vertical VO<sub>2</sub> Thermal-Electronic Circuit Elements
title_sort electro-thermal simulation of vertical vo<sub>2</sub> thermal-electronic circuit elements
publisher MDPI AG
series Energies
issn 1996-1073
publishDate 2020-07-01
description Advancement of classical silicon-based circuit technology is approaching maturity and saturation. The worldwide research is now focusing wide range of potential technologies for the “More than Moore” era. One of these technologies is thermal-electronic logic circuits based on the semiconductor-to-metal phase transition of vanadium dioxide, a possible future logic circuits to replace the conventional circuits. In thermal-electronic circuits, information flows in a combination of thermal and electronic signals. Design of these circuits will be possible once appropriate device models become available. Characteristics of vanadium dioxide are under research by preparing structures in laboratory and their validation by simulation models. Modeling and simulation of these devices is challenging due to several nonlinearities, discussed in this article. Introduction of custom finite volumes method simulator has however improved handling of special properties of vanadium dioxide. This paper presents modeling and electro-thermal simulation of vertically structured devices of different dimensions, 10<inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">n</mi> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> </inline-formula> to 300<inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">n</mi> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> </inline-formula> layer thicknesses and 200<inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">n</mi> </semantics> </math> </inline-formula><inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> </inline-formula> to 30<inline-formula> <math display="inline"> <semantics> <mi mathvariant="normal">m</mi> </semantics> </math> </inline-formula> radii. Results of this research will facilitate determination of sample sizes in the next phase of device modeling.
topic beyond CMOS
VO<sub>2</sub>
thermal-electronic circuits
electro-thermal simulation
vertical structure
url https://www.mdpi.com/1996-1073/13/13/3447
work_keys_str_mv AT mahmouddarwish electrothermalsimulationofverticalvosub2subthermalelectroniccircuitelements
AT peterneumann electrothermalsimulationofverticalvosub2subthermalelectroniccircuitelements
AT janosmizsei electrothermalsimulationofverticalvosub2subthermalelectroniccircuitelements
AT laszlopohl electrothermalsimulationofverticalvosub2subthermalelectroniccircuitelements
_version_ 1724601959563919360