Ethanol exposure increases mutation rate through error-prone polymerases

Whereas the toxic effects of ethanol are well-documented, the underlying mechanism is obscure. This study uses the eukaryotic model S. cerevisiae to reveal how exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate.

Bibliographic Details
Main Authors: Karin Voordeckers, Camilla Colding, Lavinia Grasso, Benjamin Pardo, Lore Hoes, Jacek Kominek, Kim Gielens, Kaat Dekoster, Jonathan Gordon, Elisa Van der Zande, Peter Bircham, Toon Swings, Jan Michiels, Peter Van Loo, Sandra Nuyts, Philippe Pasero, Michael Lisby, Kevin J. Verstrepen
Format: Article
Language:English
Published: Nature Publishing Group 2020-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-17447-3
Description
Summary:Whereas the toxic effects of ethanol are well-documented, the underlying mechanism is obscure. This study uses the eukaryotic model S. cerevisiae to reveal how exposure to sublethal ethanol concentrations causes DNA replication stress and an increased mutation rate.
ISSN:2041-1723