Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition

Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this res...

Full description

Bibliographic Details
Main Authors: Arturo Martínez-Rodrigo, Beatriz García-Martínez, Luciano Zunino, Raúl Alcaraz, Antonio Fernández-Caballero
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-06-01
Series:Frontiers in Neuroinformatics
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fninf.2019.00040/full
id doaj-df5e71fb414f4932a3ebd415e6c67ca1
record_format Article
spelling doaj-df5e71fb414f4932a3ebd415e6c67ca12020-11-25T02:06:59ZengFrontiers Media S.A.Frontiers in Neuroinformatics1662-51962019-06-011310.3389/fninf.2019.00040406692Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress RecognitionArturo Martínez-Rodrigo0Arturo Martínez-Rodrigo1Beatriz García-Martínez2Beatriz García-Martínez3Luciano Zunino4Luciano Zunino5Raúl Alcaraz6Antonio Fernández-Caballero7Antonio Fernández-Caballero8Antonio Fernández-Caballero9Departamento de Sistemas Informáticos, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, Cuenca, SpainInstituto de Tecnologías Audiovisuales de Castilla-La Mancha, Universidad de Castilla-La Mancha, Cuenca, SpainDepartamento de Sistemas Informáticos, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, SpainInstituto de Investigación en Informática de Albacete, Universidad de Castilla-La Mancha, Albacete, SpainCentro de Investigaciones Ópticas (CONICET La Plata–CIC), C.C. 3, Gonnet, ArgentinaDepartamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, ArgentinaResearch Group in Electronic, Biomedical and Telecommunication Engineering, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, Cuenca, SpainDepartamento de Sistemas Informáticos, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, Cuenca, SpainInstituto de Investigación en Informática de Albacete, Universidad de Castilla-La Mancha, Albacete, SpainCIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, SpainDistress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.https://www.frontiersin.org/article/10.3389/fninf.2019.00040/fullelectroencephalographydistressnon-linear metricsdelayed permutation entropypermutation min-entropy
collection DOAJ
language English
format Article
sources DOAJ
author Arturo Martínez-Rodrigo
Arturo Martínez-Rodrigo
Beatriz García-Martínez
Beatriz García-Martínez
Luciano Zunino
Luciano Zunino
Raúl Alcaraz
Antonio Fernández-Caballero
Antonio Fernández-Caballero
Antonio Fernández-Caballero
spellingShingle Arturo Martínez-Rodrigo
Arturo Martínez-Rodrigo
Beatriz García-Martínez
Beatriz García-Martínez
Luciano Zunino
Luciano Zunino
Raúl Alcaraz
Antonio Fernández-Caballero
Antonio Fernández-Caballero
Antonio Fernández-Caballero
Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition
Frontiers in Neuroinformatics
electroencephalography
distress
non-linear metrics
delayed permutation entropy
permutation min-entropy
author_facet Arturo Martínez-Rodrigo
Arturo Martínez-Rodrigo
Beatriz García-Martínez
Beatriz García-Martínez
Luciano Zunino
Luciano Zunino
Raúl Alcaraz
Antonio Fernández-Caballero
Antonio Fernández-Caballero
Antonio Fernández-Caballero
author_sort Arturo Martínez-Rodrigo
title Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition
title_short Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition
title_full Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition
title_fullStr Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition
title_full_unstemmed Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition
title_sort multi-lag analysis of symbolic entropies on eeg recordings for distress recognition
publisher Frontiers Media S.A.
series Frontiers in Neuroinformatics
issn 1662-5196
publishDate 2019-06-01
description Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.
topic electroencephalography
distress
non-linear metrics
delayed permutation entropy
permutation min-entropy
url https://www.frontiersin.org/article/10.3389/fninf.2019.00040/full
work_keys_str_mv AT arturomartinezrodrigo multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT arturomartinezrodrigo multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT beatrizgarciamartinez multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT beatrizgarciamartinez multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT lucianozunino multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT lucianozunino multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT raulalcaraz multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT antoniofernandezcaballero multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT antoniofernandezcaballero multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
AT antoniofernandezcaballero multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition
_version_ 1724931746963652608