Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition
Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this res...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-06-01
|
Series: | Frontiers in Neuroinformatics |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fninf.2019.00040/full |
id |
doaj-df5e71fb414f4932a3ebd415e6c67ca1 |
---|---|
record_format |
Article |
spelling |
doaj-df5e71fb414f4932a3ebd415e6c67ca12020-11-25T02:06:59ZengFrontiers Media S.A.Frontiers in Neuroinformatics1662-51962019-06-011310.3389/fninf.2019.00040406692Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress RecognitionArturo Martínez-Rodrigo0Arturo Martínez-Rodrigo1Beatriz García-Martínez2Beatriz García-Martínez3Luciano Zunino4Luciano Zunino5Raúl Alcaraz6Antonio Fernández-Caballero7Antonio Fernández-Caballero8Antonio Fernández-Caballero9Departamento de Sistemas Informáticos, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, Cuenca, SpainInstituto de Tecnologías Audiovisuales de Castilla-La Mancha, Universidad de Castilla-La Mancha, Cuenca, SpainDepartamento de Sistemas Informáticos, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Albacete, SpainInstituto de Investigación en Informática de Albacete, Universidad de Castilla-La Mancha, Albacete, SpainCentro de Investigaciones Ópticas (CONICET La Plata–CIC), C.C. 3, Gonnet, ArgentinaDepartamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, La Plata, ArgentinaResearch Group in Electronic, Biomedical and Telecommunication Engineering, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, Cuenca, SpainDepartamento de Sistemas Informáticos, Escuela Politécnica de Cuenca, Universidad de Castilla-La Mancha, Cuenca, SpainInstituto de Investigación en Informática de Albacete, Universidad de Castilla-La Mancha, Albacete, SpainCIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, SpainDistress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.https://www.frontiersin.org/article/10.3389/fninf.2019.00040/fullelectroencephalographydistressnon-linear metricsdelayed permutation entropypermutation min-entropy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Arturo Martínez-Rodrigo Arturo Martínez-Rodrigo Beatriz García-Martínez Beatriz García-Martínez Luciano Zunino Luciano Zunino Raúl Alcaraz Antonio Fernández-Caballero Antonio Fernández-Caballero Antonio Fernández-Caballero |
spellingShingle |
Arturo Martínez-Rodrigo Arturo Martínez-Rodrigo Beatriz García-Martínez Beatriz García-Martínez Luciano Zunino Luciano Zunino Raúl Alcaraz Antonio Fernández-Caballero Antonio Fernández-Caballero Antonio Fernández-Caballero Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition Frontiers in Neuroinformatics electroencephalography distress non-linear metrics delayed permutation entropy permutation min-entropy |
author_facet |
Arturo Martínez-Rodrigo Arturo Martínez-Rodrigo Beatriz García-Martínez Beatriz García-Martínez Luciano Zunino Luciano Zunino Raúl Alcaraz Antonio Fernández-Caballero Antonio Fernández-Caballero Antonio Fernández-Caballero |
author_sort |
Arturo Martínez-Rodrigo |
title |
Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition |
title_short |
Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition |
title_full |
Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition |
title_fullStr |
Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition |
title_full_unstemmed |
Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition |
title_sort |
multi-lag analysis of symbolic entropies on eeg recordings for distress recognition |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Neuroinformatics |
issn |
1662-5196 |
publishDate |
2019-06-01 |
description |
Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings. |
topic |
electroencephalography distress non-linear metrics delayed permutation entropy permutation min-entropy |
url |
https://www.frontiersin.org/article/10.3389/fninf.2019.00040/full |
work_keys_str_mv |
AT arturomartinezrodrigo multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT arturomartinezrodrigo multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT beatrizgarciamartinez multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT beatrizgarciamartinez multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT lucianozunino multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT lucianozunino multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT raulalcaraz multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT antoniofernandezcaballero multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT antoniofernandezcaballero multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition AT antoniofernandezcaballero multilaganalysisofsymbolicentropiesoneegrecordingsfordistressrecognition |
_version_ |
1724931746963652608 |