Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model

Abstract Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM‐Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape typ...

Full description

Bibliographic Details
Main Authors: Yihui Wang, Fengming Yuan, Fenghui Yuan, Baohua Gu, Melanie S. Hahn, Margaret S. Torn, Daniel M. Ricciuto, Jitendra Kumar, Liyuan He, Donatella Zona, David A. Lipson, Robert Wagner, Walter C. Oechel, Stan D. Wullschleger, Peter E. Thornton, Xiaofeng Xu
Format: Article
Language:English
Published: American Geophysical Union (AGU) 2019-12-01
Series:Journal of Advances in Modeling Earth Systems
Subjects:
Online Access:https://doi.org/10.1029/2019MS001771
id doaj-dfa8c097fba54973bd3e4fac7df54323
record_format Article
spelling doaj-dfa8c097fba54973bd3e4fac7df543232020-11-25T02:00:18ZengAmerican Geophysical Union (AGU)Journal of Advances in Modeling Earth Systems1942-24662019-12-0111124288430410.1029/2019MS001771Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe ModelYihui Wang0Fengming Yuan1Fenghui Yuan2Baohua Gu3Melanie S. Hahn4Margaret S. Torn5Daniel M. Ricciuto6Jitendra Kumar7Liyuan He8Donatella Zona9David A. Lipson10Robert Wagner11Walter C. Oechel12Stan D. Wullschleger13Peter E. Thornton14Xiaofeng Xu15Department of Biology San Diego State University San Diego CA USAEnvironmental Sciences Division Oak Ridge National Laboratory Oak Ridge TN USADepartment of Biology San Diego State University San Diego CA USAEnvironmental Sciences Division Oak Ridge National Laboratory Oak Ridge TN USACivil and Environmental Engineering University of California, Berkeley Berkeley CA USAEarth Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USAEnvironmental Sciences Division Oak Ridge National Laboratory Oak Ridge TN USAEnvironmental Sciences Division Oak Ridge National Laboratory Oak Ridge TN USADepartment of Biology San Diego State University San Diego CA USADepartment of Biology San Diego State University San Diego CA USADepartment of Biology San Diego State University San Diego CA USADepartment of Biology San Diego State University San Diego CA USADepartment of Biology San Diego State University San Diego CA USAEnvironmental Sciences Division Oak Ridge National Laboratory Oak Ridge TN USAEnvironmental Sciences Division Oak Ridge National Laboratory Oak Ridge TN USADepartment of Biology San Diego State University San Diego CA USAAbstract Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM‐Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low‐centered polygon (LCP) center, LCP transition, LCP rim, high‐centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM‐Microbe model against static‐chamber measured CO2 and CH4 fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low‐elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4 emissions rates with greater seasonal variations than high‐elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4 emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area‐weighted approach before validation against EC‐measured CH4 fluxes. The model underestimated the EC‐measured CH4 flux by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in reporting CH4 flux. The strong microtopographic impacts on CO2 and CH4 fluxes call for a model‐data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape.https://doi.org/10.1029/2019MS001771Arctic tundraCH4 fluxmicrotopographicsensitivity analysisnet carbon exchange
collection DOAJ
language English
format Article
sources DOAJ
author Yihui Wang
Fengming Yuan
Fenghui Yuan
Baohua Gu
Melanie S. Hahn
Margaret S. Torn
Daniel M. Ricciuto
Jitendra Kumar
Liyuan He
Donatella Zona
David A. Lipson
Robert Wagner
Walter C. Oechel
Stan D. Wullschleger
Peter E. Thornton
Xiaofeng Xu
spellingShingle Yihui Wang
Fengming Yuan
Fenghui Yuan
Baohua Gu
Melanie S. Hahn
Margaret S. Torn
Daniel M. Ricciuto
Jitendra Kumar
Liyuan He
Donatella Zona
David A. Lipson
Robert Wagner
Walter C. Oechel
Stan D. Wullschleger
Peter E. Thornton
Xiaofeng Xu
Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model
Journal of Advances in Modeling Earth Systems
Arctic tundra
CH4 flux
microtopographic
sensitivity analysis
net carbon exchange
author_facet Yihui Wang
Fengming Yuan
Fenghui Yuan
Baohua Gu
Melanie S. Hahn
Margaret S. Torn
Daniel M. Ricciuto
Jitendra Kumar
Liyuan He
Donatella Zona
David A. Lipson
Robert Wagner
Walter C. Oechel
Stan D. Wullschleger
Peter E. Thornton
Xiaofeng Xu
author_sort Yihui Wang
title Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model
title_short Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model
title_full Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model
title_fullStr Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model
title_full_unstemmed Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM‐Microbe Model
title_sort mechanistic modeling of microtopographic impacts on co2 and ch4 fluxes in an alaskan tundra ecosystem using the clm‐microbe model
publisher American Geophysical Union (AGU)
series Journal of Advances in Modeling Earth Systems
issn 1942-2466
publishDate 2019-12-01
description Abstract Spatial heterogeneities in soil hydrology have been confirmed as a key control on CO2 and CH4 fluxes in the Arctic tundra ecosystem. In this study, we applied a mechanistic ecosystem model, CLM‐Microbe, to examine the microtopographic impacts on CO2 and CH4 fluxes across seven landscape types in Utqiaġvik, Alaska: trough, low‐centered polygon (LCP) center, LCP transition, LCP rim, high‐centered polygon (HCP) center, HCP transition, and HCP rim. We first validated the CLM‐Microbe model against static‐chamber measured CO2 and CH4 fluxes in 2013 for three landscape types: trough, LCP center, and LCP rim. Model application showed that low‐elevation and thus wetter landscape types (i.e., trough, transitions, and LCP center) had larger CH4 emissions rates with greater seasonal variations than high‐elevation and drier landscape types (rims and HCP center). Sensitivity analysis indicated that substrate availability for methanogenesis (acetate, CO2 + H2) is the most important factor determining CH4 emission, and vegetation physiological properties largely affect the net ecosystem carbon exchange and ecosystem respiration in Arctic tundra ecosystems. Modeled CH4 emissions for different microtopographic features were upscaled to the eddy covariance (EC) domain with an area‐weighted approach before validation against EC‐measured CH4 fluxes. The model underestimated the EC‐measured CH4 flux by 20% and 25% at daily and hourly time steps, suggesting the importance of the time step in reporting CH4 flux. The strong microtopographic impacts on CO2 and CH4 fluxes call for a model‐data integration framework for better understanding and predicting carbon flux in the highly heterogeneous Arctic landscape.
topic Arctic tundra
CH4 flux
microtopographic
sensitivity analysis
net carbon exchange
url https://doi.org/10.1029/2019MS001771
work_keys_str_mv AT yihuiwang mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT fengmingyuan mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT fenghuiyuan mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT baohuagu mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT melanieshahn mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT margaretstorn mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT danielmricciuto mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT jitendrakumar mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT liyuanhe mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT donatellazona mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT davidalipson mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT robertwagner mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT waltercoechel mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT standwullschleger mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT peterethornton mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
AT xiaofengxu mechanisticmodelingofmicrotopographicimpactsonco2andch4fluxesinanalaskantundraecosystemusingtheclmmicrobemodel
_version_ 1724961459783335936