Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth

Current theories suggest that the first continental crust on Earth, and possibly on other terrestrial planets, may have been produced early in their history by direct melting of hydrated peridotite. However, the conditions, mechanisms and necessary ingredients for this crustal formation remain elusi...

Full description

Bibliographic Details
Main Authors: Anastassia Y. Borisova, Nail R. Zagrtdenov, Michael J. Toplis, Wendy A. Bohrson, Anne Nédélec, Oleg G. Safonov, Gleb S. Pokrovski, Georges Ceuleneer, Ilya N. Bindeman, Oleg E. Melnik, Klaus Peter Jochum, Brigitte Stoll, Ulrike Weis, Andrew Y. Bychkov, Andrey A. Gurenko, Svyatoslav Shcheka, Artem Terehin, Vladimir M. Polukeev, Dmitry A. Varlamov, Kouassi Chariteiro, Sophie Gouy, Philippe de Parseval
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-05-01
Series:Frontiers in Earth Science
Subjects:
TTG
Online Access:https://www.frontiersin.org/articles/10.3389/feart.2021.640464/full
id doaj-dfcbf83cdeb84b78853d968a2868e0d5
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Anastassia Y. Borisova
Anastassia Y. Borisova
Nail R. Zagrtdenov
Michael J. Toplis
Wendy A. Bohrson
Anne Nédélec
Oleg G. Safonov
Oleg G. Safonov
Oleg G. Safonov
Gleb S. Pokrovski
Georges Ceuleneer
Ilya N. Bindeman
Ilya N. Bindeman
Oleg E. Melnik
Klaus Peter Jochum
Brigitte Stoll
Ulrike Weis
Andrew Y. Bychkov
Andrey A. Gurenko
Svyatoslav Shcheka
Artem Terehin
Vladimir M. Polukeev
Dmitry A. Varlamov
Kouassi Chariteiro
Sophie Gouy
Philippe de Parseval
spellingShingle Anastassia Y. Borisova
Anastassia Y. Borisova
Nail R. Zagrtdenov
Michael J. Toplis
Wendy A. Bohrson
Anne Nédélec
Oleg G. Safonov
Oleg G. Safonov
Oleg G. Safonov
Gleb S. Pokrovski
Georges Ceuleneer
Ilya N. Bindeman
Ilya N. Bindeman
Oleg E. Melnik
Klaus Peter Jochum
Brigitte Stoll
Ulrike Weis
Andrew Y. Bychkov
Andrey A. Gurenko
Svyatoslav Shcheka
Artem Terehin
Vladimir M. Polukeev
Dmitry A. Varlamov
Kouassi Chariteiro
Sophie Gouy
Philippe de Parseval
Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth
Frontiers in Earth Science
experiment
basaltic melt-serpentinite rock interaction
TTG
ophiolites
Hadean eon
Noachian
author_facet Anastassia Y. Borisova
Anastassia Y. Borisova
Nail R. Zagrtdenov
Michael J. Toplis
Wendy A. Bohrson
Anne Nédélec
Oleg G. Safonov
Oleg G. Safonov
Oleg G. Safonov
Gleb S. Pokrovski
Georges Ceuleneer
Ilya N. Bindeman
Ilya N. Bindeman
Oleg E. Melnik
Klaus Peter Jochum
Brigitte Stoll
Ulrike Weis
Andrew Y. Bychkov
Andrey A. Gurenko
Svyatoslav Shcheka
Artem Terehin
Vladimir M. Polukeev
Dmitry A. Varlamov
Kouassi Chariteiro
Sophie Gouy
Philippe de Parseval
author_sort Anastassia Y. Borisova
title Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth
title_short Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth
title_full Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth
title_fullStr Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth
title_full_unstemmed Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow Depth
title_sort hydrated peridotite – basaltic melt interaction part i: planetary felsic crust formation at shallow depth
publisher Frontiers Media S.A.
series Frontiers in Earth Science
issn 2296-6463
publishDate 2021-05-01
description Current theories suggest that the first continental crust on Earth, and possibly on other terrestrial planets, may have been produced early in their history by direct melting of hydrated peridotite. However, the conditions, mechanisms and necessary ingredients for this crustal formation remain elusive. To fill this gap, we conducted time-series experiments to investigate the reaction of serpentinite with variable proportions (from 0 to 87 wt%) of basaltic melt at temperatures of 1,250–1,300°C and pressures of 0.2–1.0 GPa (corresponding to lithostatic depths of ∼5–30 km). The experiments at 0.2 GPa reveal the formation of forsterite-rich olivine (Fo90–94) and chromite coexisting with silica-rich liquids (57–71 wt% SiO2). These melts share geochemical similarities with tonalite-trondhjemite-granodiorite rocks (TTG) identified in modern terrestrial oceanic mantle settings. By contrast, liquids formed at pressures of 1.0 GPa are poorer in silica (∼50 wt% SiO2). Our results suggest a new mechanism for the formation of the embryonic continental crust via aqueous fluid-assisted partial melting of peridotite at relatively low pressures (∼0.2 GPa). We hypothesize that such a mechanism of felsic crust formation may have been widespread on the early Earth and, possibly on Mars as well, before the onset of modern plate tectonics and just after solidification of the first ultramafic-mafic magma ocean and alteration of this primitive protocrust by seawater at depths of less than 10 km.
topic experiment
basaltic melt-serpentinite rock interaction
TTG
ophiolites
Hadean eon
Noachian
url https://www.frontiersin.org/articles/10.3389/feart.2021.640464/full
work_keys_str_mv AT anastassiayborisova hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT anastassiayborisova hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT nailrzagrtdenov hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT michaeljtoplis hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT wendyabohrson hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT annenedelec hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT oleggsafonov hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT oleggsafonov hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT oleggsafonov hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT glebspokrovski hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT georgesceuleneer hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT ilyanbindeman hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT ilyanbindeman hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT olegemelnik hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT klauspeterjochum hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT brigittestoll hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT ulrikeweis hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT andrewybychkov hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT andreyagurenko hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT svyatoslavshcheka hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT artemterehin hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT vladimirmpolukeev hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT dmitryavarlamov hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT kouassichariteiro hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT sophiegouy hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
AT philippedeparseval hydratedperidotitebasalticmeltinteractionpartiplanetaryfelsiccrustformationatshallowdepth
_version_ 1721424270737801216
spelling doaj-dfcbf83cdeb84b78853d968a2868e0d52021-05-28T10:05:03ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632021-05-01910.3389/feart.2021.640464640464Hydrated Peridotite – Basaltic Melt Interaction Part I: Planetary Felsic Crust Formation at Shallow DepthAnastassia Y. Borisova0Anastassia Y. Borisova1Nail R. Zagrtdenov2Michael J. Toplis3Wendy A. Bohrson4Anne Nédélec5Oleg G. Safonov6Oleg G. Safonov7Oleg G. Safonov8Gleb S. Pokrovski9Georges Ceuleneer10Ilya N. Bindeman11Ilya N. Bindeman12Oleg E. Melnik13Klaus Peter Jochum14Brigitte Stoll15Ulrike Weis16Andrew Y. Bychkov17Andrey A. Gurenko18Svyatoslav Shcheka19Artem Terehin20Vladimir M. Polukeev21Dmitry A. Varlamov22Kouassi Chariteiro23Sophie Gouy24Philippe de Parseval25Géosciences Environnement Toulouse, GET/OMP (CNRS, UT3, IRD, CNES), Toulouse, FranceGeological Department, Lomonosov Moscow State University, Vorobievy Gory, Moscow, RussiaGéosciences Environnement Toulouse, GET/OMP (CNRS, UT3, IRD, CNES), Toulouse, FranceInstitut de Recherche en Astrophysique et Planétologie (IRAP) UT3, CNRS, Toulouse, FranceDepartment of Geology and Geological Engineering, Colorado School of Mines, Golden CO, United StatesGéosciences Environnement Toulouse, GET/OMP (CNRS, UT3, IRD, CNES), Toulouse, FranceGeological Department, Lomonosov Moscow State University, Vorobievy Gory, Moscow, RussiaKorzhinskii Institute of Experimental Mineralogy, Chernogolovka, Moscow Region, RussiaDepartment of Geology, University of Johannesburg, Auckland Park, 2006, Johannesburg, South AfricaGéosciences Environnement Toulouse, GET/OMP (CNRS, UT3, IRD, CNES), Toulouse, FranceGéosciences Environnement Toulouse, GET/OMP (CNRS, UT3, IRD, CNES), Toulouse, FranceDepartment of Sciences, University of Oregon, Eugene, OR, United StatesFersman Mineralogical Museum, Leninsky Prospect 18, Moscow, RussiaInstitute of Mechanics, Moscow State University, 1- Michurinskii Prosp, Moscow, Russia0Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany0Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany0Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, GermanyGeological Department, Lomonosov Moscow State University, Vorobievy Gory, Moscow, Russia1Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Université de Lorraine, 54501 Vandœuvre-lès-Nancy, France2Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, Bayreuth, GermanyKorzhinskii Institute of Experimental Mineralogy, Chernogolovka, Moscow Region, RussiaKorzhinskii Institute of Experimental Mineralogy, Chernogolovka, Moscow Region, RussiaKorzhinskii Institute of Experimental Mineralogy, Chernogolovka, Moscow Region, RussiaGéosciences Environnement Toulouse, GET/OMP (CNRS, UT3, IRD, CNES), Toulouse, FranceGéosciences Environnement Toulouse, GET/OMP (CNRS, UT3, IRD, CNES), Toulouse, FranceGéosciences Environnement Toulouse, GET/OMP (CNRS, UT3, IRD, CNES), Toulouse, FranceCurrent theories suggest that the first continental crust on Earth, and possibly on other terrestrial planets, may have been produced early in their history by direct melting of hydrated peridotite. However, the conditions, mechanisms and necessary ingredients for this crustal formation remain elusive. To fill this gap, we conducted time-series experiments to investigate the reaction of serpentinite with variable proportions (from 0 to 87 wt%) of basaltic melt at temperatures of 1,250–1,300°C and pressures of 0.2–1.0 GPa (corresponding to lithostatic depths of ∼5–30 km). The experiments at 0.2 GPa reveal the formation of forsterite-rich olivine (Fo90–94) and chromite coexisting with silica-rich liquids (57–71 wt% SiO2). These melts share geochemical similarities with tonalite-trondhjemite-granodiorite rocks (TTG) identified in modern terrestrial oceanic mantle settings. By contrast, liquids formed at pressures of 1.0 GPa are poorer in silica (∼50 wt% SiO2). Our results suggest a new mechanism for the formation of the embryonic continental crust via aqueous fluid-assisted partial melting of peridotite at relatively low pressures (∼0.2 GPa). We hypothesize that such a mechanism of felsic crust formation may have been widespread on the early Earth and, possibly on Mars as well, before the onset of modern plate tectonics and just after solidification of the first ultramafic-mafic magma ocean and alteration of this primitive protocrust by seawater at depths of less than 10 km.https://www.frontiersin.org/articles/10.3389/feart.2021.640464/fullexperimentbasaltic melt-serpentinite rock interactionTTGophiolitesHadean eonNoachian