Inhibition of Candida albicans biofilm development by unencapsulated Enterococcus faecalis cps2

Background/purpose: In the oral environment, Candida albicans interacts with many bacteria, including Enterococcus faecalis. We investigated the susceptibility of C. albicans biofilm development to the presence of unencapsulated E. faecalis cps2 in comparison with reference strains (E. faecalis ATCC...

Full description

Bibliographic Details
Main Authors: Endang W. Bachtiar, Sari Dewiyani, Siti M. Surono Akbar, Boy M. Bachtiar
Format: Article
Language:English
Published: Elsevier 2016-09-01
Series:Journal of Dental Sciences
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1991790216300204
Description
Summary:Background/purpose: In the oral environment, Candida albicans interacts with many bacteria, including Enterococcus faecalis. We investigated the susceptibility of C. albicans biofilm development to the presence of unencapsulated E. faecalis cps2 in comparison with reference strains (E. faecalis ATCC 29212) or their respective spent medium (collected at 6 hours). Material and methods: Crystal violet stain was used to measure the total biofilm mass, whereas quantitative real-time polymerase chain reaction was used to analyze the change in expression of the mRNA of hypha morphology (ALS1 and ALS3) and biofilm maturation (EFB1). Results: At the intermediate stage, C. albicans resisted the presence of each E. faecalis strain tested and their spent medium. However, at the maturation stage, the unencapsulated strain was stronger in reducing C. albicans biofilms than the reference strain (P < 0.05). At this maturation stage, the transcription levels of each gene tested decreased in the presence of either E. faecalis strains or their respective spent medium. The unencapsulated strain was more pronounced in reducing ALS1/ALS3 expression, whereas the respective spent medium had a similar capability to restrict the expression of EFB1. Conclusion: This study showed, the unencapsulated strain is more effective in inhibiting C. albicans biofilm development compared with the reference strains. In contrast, the secreted molecules produced by each strain tested are necessary in controlling the growths of C. albicans biofilm.
ISSN:1991-7902