Effect of Tool-Path on Morphology and Mechanical Properties of Ti-6Al-4V Fabricated by Wire and Arc Additive Manufacturing

Ti-6Al-4V components are widely used in aerospace industry. However, it’s not economic to manufacture them in traditional subtractive methods. Wire and arc additive manufacturing (WAAM) is a promising alternative technology for fabricating it efficiently and economically. Tool-path planning strategy...

Full description

Bibliographic Details
Main Authors: Fu Jie, Qiu Kun, Gong Lin, Liu Changmeng, Wu Qianru, Lu Jiping, Fan Hongli
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201712805009
Description
Summary:Ti-6Al-4V components are widely used in aerospace industry. However, it’s not economic to manufacture them in traditional subtractive methods. Wire and arc additive manufacturing (WAAM) is a promising alternative technology for fabricating it efficiently and economically. Tool-path planning strategy is a very important step in WAAM process. This paper investigated the influence of the lap way between layers and layers in tool-path on the Ti-6Al-4V samples fabricated by WAAM. It has been found that the lap way between layers and layers in tool-path do influence the forming quality and especially mechanical properties of the fabricated samples. Samples have different surface quality (smooth or undulating) and defects inside or on the surface of the components. The highest and smallest ultra tensile strength of the fabricated samples are respectively 907.86 MPa, 684.82 MPa. But it has few effect on the grains of the fabricated samples, and they all have cross-sectional columnar grains.
ISSN:2261-236X